
Contract No. IST 2005-034891

Hydra
Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

D4.2 Embedded Service SDK Prototype and Report

Integrated Project
SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium December 28, 2007- version 1.4
Lead Contractor: University of Aarhus

Project co-funded by the European Commission
within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Confidential

Hydra

Document File: D4.2 Embedded Service SDK Prototype and Report
Work Package: 4
Task: 2
Document Owner: University of Aarhus

Document history:
Version Authors Date Changes Made
1.0 Klaus Marius Hansen and

Weishan Zhang
2007-10-06 First draft of deliverable based

on papers
1.1 Klaus Marius Hansen 2007-10-25 Update of outline
1.2 Klaus Marius Hansen and

Weishan Zhang
2007-12-16 Details and revisions. Ready

for internal review
1.3 Klaus Marius Hansen 2007-12-17 Additional material on Limbo

evaluation. Ready for internal
review

1.4 Klaus Marius Hansen and
Weishan Zhang

2007-12-22 Updates based on internal re-
view. Ready for submission to
commission

Internal review history:
Reviewed by Date Comments
Siegfried Bublitz, SAG 2007-12-18 Approved with comments
Peter Rosengren, CNET 2007-12-18 Approved with comments

Version 1.4 2 of 44 December 28, 2007

Contents

1 Introduction . 6
1.1 Purpose, context, and scope of this deliverable 6
1.2 Structure of the deliverable . 7
2 Design goals of Limbo . 8
3 Design and architecture . 10
3.1 The compilation process . 10
3.2 Implementing services . 12
3.3 The runtime of services . 13
3.4 Limbo architecture . 14
3.5 Limbo design vs. design goals . 16
4 Ontologies in Limbo . 17
4.1 Ontology structure . 17
4.2 Device Ontology and its associated ontologies 18

4.2.1 Device ontology . 18
4.2.2 Software platform related ontologies 19

4.3 Ontology reasoning in Limbo . 20
4.3.1 Getting device information . 22
4.3.2 Formal configuration with LimboConfiguration ontology 22

4.4 State Machine . 26
4.4.1 State machine ontology . 26
4.4.2 Development of the state machine ontology 26
4.4.3 SWRL rules for diagnosis and complex context specification 27

4.5 Ontology tools experience . 28
4.5.1 Ontology development tools . 28
4.5.2 Ontology reasoning tools . 29
4.5.3 Ontology programming APIs . 29
4.5.4 Rule engine . 29
4.5.5 Tool experiences . 29

5 Evaluation of Limbo . 33
5.1 Completeness . 33
5.2 Performance . 33
5.3 Complexity and utility . 34

5.3.1 Complexity and utility of ontology construction 35
5.3.2 Complexity and utility of code generation 36

5.4 Evaluation conclusions . 37
6 Conclusion and future work . 39
A HTC P3300 Blood Pressure service WSDL file 40
B HTC P3300 Ontologies . 41
B.1 Device ontology . 41
B.2 State Machine ontology . 41
B.3 Hardware ontology . 42

3

Hydra

B.4 Software platform ontology . 43

Version 1.4 4 of 44 December 28, 2007

List of Figures

2.1 Device integration in Hydra . 9

3.1 Limbo compilation . 10
3.2 Thermometer ontology excerpt . 12
3.3 Thermometer state machine . 12
3.4 Limbo command line . 13
3.5 Thermometer runtime . 14
3.6 Limbo module structure . 14
3.7 Limbo module structure . 15

4.1 Structure of ontologies used in Limbo . 17
4.2 Legend for ontology . 18
4.3 Device ontology . 19
4.4 SoftwarePlatform Ontology . 20
4.5 Java ontology . 21
4.6 Operating system ontology . 21
4.7 Device ontology details . 30
4.8 Feature model for Limbo . 31
4.9 Limbo configuration reasoning . 31
4.10 Limbo configuration algorithm . 32
4.11 State machine Ontology . 32

5.1 Limbo time measurements . 34
5.2 Limbo memory measurements . 35
5.3 Blood pressure service state machine . 36
5.4 HTC P3300 ontology overview . 38

5

Hydra

1 Introduction

1.1 Purpose, context, and scope of this deliverable

The purpose of this deliverable is to present Limbo and associated technology which is an
integral part of the Hydra SDK.

Generally, a Software Development Kit (SDK) contains runtime and development-time
components as well as resources that support developers in building applications. In the
context of WP4 and embedded services, this consists of the following components:

• Development-time components. The primary output of WP4 here is a compiler for
semantic, embedded web services, Limbo, which is the main focus of this deliverable.
Other typical components in this category which are not presently considered in Hydra
are linkers and assemblers.

• Runtime components. A main part of an SDK are runtime libraries of which a major
category in Hydra are managers. These are described in more detail in the WP3
deliverables and the Diagnostics Manager, Flamenco is described in D4.3 (Hansen
and Zhang, 2007). Here we also describe how Limbo plug-ins may be created. Further
components typically in this category are virtual machines and debuggers.

• Resource components. This document is part of the documentation of the SDK (and
in particular Limbo). Furthermore, Limbo is documented in code (using JavaDoc), and
the prototype also contains a user’s guide. Finally, the ontologies used in Hydra (some
of which are discussed in this report), are a part of the resources for developers.

The other parts of this deliverable are the first Limbo prototype and its associated docu-
mentation:

• Limbo prototype

– https://hydra.fit.fraunhofer.de/svn/trunk/sdk/limbo

• Limbo tutorial

– https://hydra.fit.fraunhofer.de/confluence/x/NQUv

• Limbo ontologies (used with Limbo1, no rules and LimboConfiguration ontology)

– https://hydra.fit.fraunhofer.de/svn/trunk/sdk/limbo/
resources

Furthermore, the following is needed in order to run Limbo services with state machines:

• Hydra event manager

– https://hydra.fit.fraunhofer.de/svn/trunk/middleware/
eventmanager

This material is also provided for review in a ZIP file as part of this deliverable.

Version 1.4 6 of 44 December 28, 2007

https://hydra.fit.fraunhofer.de/svn/trunk/sdk/limbo
https://hydra.fit.fraunhofer.de/confluence/x/NQUv
https://hydra.fit.fraunhofer.de/svn/trunk/sdk/limbo/resources
https://hydra.fit.fraunhofer.de/svn/trunk/sdk/limbo/resources
https://hydra.fit.fraunhofer.de/svn/trunk/middleware/eventmanager
https://hydra.fit.fraunhofer.de/svn/trunk/middleware/eventmanager

Hydra

1.2 Structure of the deliverable

The rest of this deliverable is structured as follows:

• First, Section 2 (page 8) presents the design goals of Limbo and how they relate to
the Hydra requirements.

• Then Section 3 (page 10) explains the design of Hydra in relation to the goals.

• Section 4 (page 17) goes into detail with the use of ontologies in Limbo.

• In Section 5 (page 33) we present the evaluations of the current version of Limbo.

• Finally, Section 6 (page 39) concludes the deliverable

Version 1.4 7 of 44 December 28, 2007

Hydra

2 Design goals of Limbo

A number of goals have been driving the design of the Limbo compiler:

1. Resource efficiency. Web services developed based on artefacts produced by the
Limbo compiler must be efficient in terms of memory usage, processing power, and
network use. Effectiveness of communication is to some extent given by the protocols
used: SOAP, e.g., is very resource consuming in terms of network usage whereas a
REST-based protocol is more efficient although it still uses HTTP.

2. Complexity hiding. Artefacts generated by Limbo should hide the complexities of web
services meaning that Limbo needs to take device characteristics into consideration
during compilation. Limbo should help a web service developer to understand the
intricacies of the devices the web service is developed for, and should reduce the
burden of understanding device details.

3. Dynamicity support. We are considering devices in dynamic environments in which
devices are moved, network connectivity is changing, and resources available vary.
Therefore it is very important to know the states of devices in a system from the point
of view of an application using device web services. This includes supporting context
awareness from the level of devices.

4. Platform decision support. The heterogeneity of devices brings a large number of
variants in software and hardware platforms. Some software platforms consume more
memory and require more powerful CPUs than others. Limbo should help a web
service developer to make decisions on the code produced and choosing appropriate
platforms accordingly.

5. Rigorously regulate compilation feature combinations. Besides the hiding of complex-
ity of targeting device software and hardware platform, the compiler should also be
user-friendly to the web-service developer in terms of hiding compiler details, espe-
cially different parsers for different platforms and their inter-dependencies.

Furthermore, the following WP3, WP4, and WP6 requirements (which are the ones most
related to Limbo) need to be taken into account:

HYDRA-017 When applicable, middleware interfaces are exposed by WSA-compatible ser-
vices

HYDRA-019 Support of low-end devices

HYDRA-031 An easy-to-use programming framework should be provided

HYDRA-112 Dynamic Web Service Generation

HYDRA-114 Semantic enabling of device web services

HYDRA-151 Devices send events when their status changes

HYDRA-337 There should be a procedure/strategy for interfacing with non-HYDRA devices

HYDRA-366 Services should run on embedded devices

Version 1.4 8 of 44 December 28, 2007

Hydra

Figure 2.1: Device integration in Hydra

Furthermore, Limbo should in general support the Hydra middleware. The IP-based
device integration in Hydra is illustrated in Figure 2.1 (taken from WP5). Limbo should
directly support the generation of web services for D1 devices (see D5.4 “Draft of Wireless
Devices Integration” for details), but should also support the generation of web services for
D3 devices (which may, e.g., support Java ME).

Version 1.4 9 of 44 December 28, 2007

Hydra

3 Design and architecture

In order to exemplify the design in the following, we use a simple example of a service,
a thermometer service, that is able to deliver a temperature when requested. In Java-like
code, the service would have this interface:

public interface ThermometerService {
double getTemperature();

}

3.1 The compilation process

Figure 3.1 shows the compilation process of the Limbo compiler. A device service developer
initiates the process and the Limbo compiler generates service implementation artefacts. In

Provide WSDL

service description
Provide Limbo

configuration

Generate based

on configuration

Generate based

on ontology

[Ontology available][Ontology not available]

Create embedded

stubs and skeletons

Create proxy stubs

and skeletons

[Resources available on device][Resources not available on device]

Figure 3.1: Limbo compilation

Version 1.4 10 of 44 December 28, 2007

Hydra

the following, we explain each of these steps1:

• Provide WSDL service description: The main input for Limbo is a service description
written in the Web Service Description Language (WSDL). In addition to normal WSDL
constructs, Limbo also supports that WSDL files reference the Hydra device ontology.
For the thermometer example, this may look like:

<hydra:binding device="http://hydra.eu.com/ontology/-
device-ontology.owl#thermometer"/>

Formally, this extension appears as follows in a WSDL file specification:

<wsdl:binding name="nmtoken" type="qname">*
<-- extensibility element --> *
<hydra:binding device="uri">?
<wsdl:operation name="nmtoken">*

...
</wsdl:operation>

</wsdl:binding>

where

xmlns:hydra="http://hydra.eu.com/"

This may be seen as an extension of the WSDL-S semantic extension of WSDL files
in that WSDL-S is not concerned with WSDL bindings whereas the Hydra extension
is. Limbo resolves the URI and uses the device-specific information in the compilation
process.

• Provide Limbo configuration: Limbo may be configured through a command-line con-
figuration. In this way the device service developer may determine, e.g., that proxy
code should always be generated

• Generate based on configuration. If no ontology is available (or specified) for the
service, the generation of code artefacts is based solely on the developer-specified
configuration to Limbo. (See “Create embedded stubs and skeletons” below for an
explanation of generated artefacts)

• Generate based on ontology. If an ontology for the device is available this is used to
guide the compilation. The ontology input consists of two main parts:

1. A platform description. An excerpt of an example platform description for the
thermometer example is shown in Figure 3.2.

2. A state machine description. An example (simplified) state machine for the ther-
mometer example is shown in Figure 3.3.

Details on the use of ontologies are provided in Section 4.

1The Limbo manual, http://..., provides detail on how Limbo is concretely used

Version 1.4 11 of 44 December 28, 2007

http://...

Hydra

<hydra_device rdf:ID="thermometer">
<info rdf:resource="#info_description_thermometer"/>
<agent_compliancy rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>false</agent_compliancy>
<hw_properties>
<hw_description rdf:ID="hw_description_thermometer">

<numOfChannels rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>3</numOfChannels>
<connection rdf:resource="#Serial_connection_1"/>
<cpu rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>PIC16C54C</cpu>

</hw_description>
</hw_properties>
...

</hydra_device>

Figure 3.2: Thermometer ontology excerpt

starting Measuring stopping

Figure 3.3: Thermometer state machine

• Create embedded stubs and skeletons. In both this and the “Create proxy stubs and
skeletons” activity, stubs and skeletons for the device service are created. Stubs are
client-side implementations of a service interface and skeletons are server-side partial
implementations. Both of these are provided in the target language (Limbo currently
only supports Java). A crucial part of the Limbo generation is generating a service-
specific parser. Since XML grammars are quite simple (Murata et al., 2005) this can
be done in an efficient way.

• Create proxy stubs and skeletons. In this case, OSGi-based artefacts are created.
Instead of generating a simplified web server, the built-in HTTP Service of OSGi is
used

3.2 Implementing services

For the thermometer with a configuration of a standalone server written in Java Standard
Edition, the following classes will be generated. One can choose also to have an OSGi
configuration (JSE) or a Java ME server, and finally one can generate clients either for Java
ME or Java SE. The output for OSGi is standard (i.e. an Activator instead of an EndPoint, a
th03Servlet instead of a th03Service).

• EndPoint.java - Abstract class that defines the EndPoints (i.e. services) that are pro-
vided by the server

Version 1.4 12 of 44 December 28, 2007

Hydra

• th03OpsImpl.java - Implementation of the service methods

• th03Service.java - Service class that handles the request and returns the respective
result

• LimboServer.java - Limbo Server main class

• StringTokenizer.java - Hydra version of String Tokenizer, which was created in order to
face the difficulties of this class being non-existent in JAVA Micro Edition

Figure 3.4: Limbo command line

Currently, the developer has to use a command line (see Figure 3.4) to generate services.
Based on the generated artefacts, the device developer needs to implement the device
service. This entails:

• Binding the device services to the actual device. For the thermometer service this
would entail, e.g., creating a thread that continuously calculates the temperature for
the thermometer and storing the value in a local variable. The actual service imple-
mentation would then read this local variable and return the temperature value.

• Ensure state notifications are sent. The state machine stub needs to be invoked at
proper places. In the case of Figure 3.3 this is when the thermometer is started, when
it is measuring, and when it stops (if possible). Each successive call will at runtime
trigger an event being sent through the Hydra middleware.

• Create deployment artefacts. Currently, the device developers have to create deploy-
ment artefacts (JAR files, OSGi bundles etc) based on the generated code in order to
be able to deploy the service

3.3 The runtime of services

Figure 3.5 shows a typical deployment of a Limbo service. The thermometer service is
deployed on a Thermometer Device (either directly or by proxy as explained previously).
A service that needs temperature data (“Thermometer Client”) then uses the thermometer
service through its web service interface. Finally, the state changes internally in the device
triggers events sent through the Event Manager of Hydra. Currently, the device service
developer is responsible for implementing code that locates the Event Manager service,
but the next version of Limbo should support that the generated services use the Hydra
discovery protocol.

Version 1.4 13 of 44 December 28, 2007

Hydra

:Thermometer

Service

:Themometer Device :Event Manager

:Event

Manager Service

:Thermometer

Client

EventManagerService

ThermometerService

Figure 3.5: Thermometer runtime

com.eu.hydra.

limbo

statemachine wsdl

Limbo

Ontology

Handler

TypesHandler

Figure 3.6: Limbo module structure

3.4 Limbo architecture

Figure 3.6 shows (part of) the current module structure of Limbo. The main responsibilities
of the modules (packages and classes) are:

• Limbo: overall control and configuration handling

• OntologyHandler: general referencing of device ontology

• statemachine: classes for generation of device state machine based on the device
ontology

• wsdl: classes for generation of service-specific parsers

The current implementation of Limbo is the one that has been implemented and evalu-
ated (see Section 5, page 33). Although this evaluation can be said to be succesful it has
been decided to redesign Limbo for the next Hydra iteration. Based on the experience in
implementing Limbo and the evaluation, the following shortcomings have been identified:

Version 1.4 14 of 44 December 28, 2007

Hydra

com.eu.hydra.

limbo

frontend repository backend

wsdl

soap rest

generator

parserstatemachine transport

clientside serverside

ontology

Figure 3.7: Limbo module structure

• The architecture is inflexible with respect to extensions. Adding a new application-level
communication protocol such as REST (REpresentational State Transfer) is hard

• The architecture makes reasoning over configurations hard since it is not sufficiently
modularized. The generation of server- and client-side code is, e.g., localized in the
same module. Thus the reasoning on ontologies as presented in Section 4 is primarily
implemented in a proof-of-concept version not integrated in the first version of Limbo.

• The missing modularization also makes flexible reconfiguration hard since modules
cannot be freely combined in a meaningful way. It is not possible, e.g., to decouple the
choice of a SOAP protocol from the choice of a specific serverside implementation

This has lead to the redesign of Limbo (called “Limbo2” in the rest of this deliverable) pre-
sented in Figure 3.7 which is now being implemented. The three main modules are:

• frontend: encapsulates processing of input artefacts. In our case this is ontologies and
service descriptions (wsdl). The result of processing these are written into a repository

• repository: this encapsulates information in the compilation process

• backend: encapsulates the generation of output artefacts such as statemachines,
parsers, clientside artefacts, serverside artefacts, and transports

For the concrete realization of modules, an implementation based on OSGi bundles which
will be annotated with ontology references (as described in Section 4.3.2, page 22) is
planned. This allows for runtime configuration of the compiler modules based on ontological
reasoning.

Version 1.4 15 of 44 December 28, 2007

Hydra

3.5 Limbo design vs. design goals

In this section, we briefly summarize how the design of Limbo attempts to meet the design
goals:

1. Resource efficiency. The web services generated by Limbo may use a special-
purpose web server and use a specialized XML parser for a specific service (see
Section 3.1). Furthermore, the architecture of Limbo2 enables flexible choice of (more)
resource-efficient service implementations such as REST.

2. Complexity hiding. The device service developer needs only to be concerned with
target language artefacts. If the language is Java, the developer needs to override
Java methods and invoke Java methods of the generated state machine. Ontology
details, e.g., are thus hidden from the developer (if the developer wants so).

3. Dynamicity support. Devices report their state through the use of events. Currently,
Limbo supports reporting of basic state information (i.e., that the device is in a given
state), allowing state actions to be bound to service operation. But it is planned to
make the state machine translation more complete (e.g., consideration of transition
conditions).

4. Platform decision support. Platform decision is supported through configuration and
through the use of ontologies (see Section 4) for more detail.

5. Rigorously regulate compilation feature combinations. Limbo2 supports automatic fea-
ture combination again through the use ontologies (see Section 4).

Furthermore, we briefly summarize the status with respect to the listed Limbo-related
requirements.

HYDRA-017 When applicable, middleware interfaces are exposed by WSA-compatible ser-
vices. Limbo attempts to generate compliant service, but compliance to any specific
specification is at the discretion of the device service developer

HYDRA-019 Support of low-end devices. Limbo employes techniques to reduce resource
utilization at service runtime

HYDRA-031 An easy-to-use programming framework should be provided. We attempt to
use well-known programming frameworks (direct methods calls with target language
objects) instead of being forced to use

HYDRA-112 Dynamic Web Service Generation. Limbo could be used as a component in
the middleware runtime even though this has not been the focus thus far

HYDRA-114 Semantic enabling of device web services. We use semantics to guide the
translation and generated services may, e.g., be used for semantic service composi-
tion.

HYDRA-151 Devices send events when their status changes. Limbo supports this through
the state machines that are generated.

HYDRA-366 Services should run on embedded devices. This is in line with HYDRA-019

HYDRA-337 There should be a procedure/strategy for interfacing with non-HYDRA devices.
This is currently done through the use of OSGi-based proxies that can be generated
by Limbo

Version 1.4 16 of 44 December 28, 2007

Hydra

4 Ontologies in Limbo

4.1 Ontology structure

Ontologies are very important in the Hydra project to achieve context-awareness and fulfill
the self-recovery requirements when there are failures, and also for achieving the design
goals of the Limbo compiler. Corresponding to the design goal of complexity hiding, all
details for device hardware and software are encoded in the related ontologies. Web service
developers only need to know about the device URI and the service they are implementing.
The device URI is the resource pointed to a specific device instance in the Device ontology.
To model the dynamicity of a device, an state machine ontology is used to model device
state and transition changes and it is linked to the device URI.

In order to provide resource-efficient code generation capabilities to Limbo (especially
for Limbo2, as Limbo1 is using only the CPU information at present stage), knowledge on
device software platform classification and resource consumption comparisons is built into
related ontologies, and can be accessed through the ontology frontend of Limbo.

To this end, we design several OWL-DL ontologies including Device, Hardware, Soft-
warePlatform, OperatingSystem, StateMachine and so on. The ontologies related to the
Limbo compiler are shown in Figure 4.1.

Device

SoftwarePlatform StateMachine

Limbo

Configuration

OperatingSystem JavaDotNet

HardwarePlatformService Error

Service Error Info CapabilityClassification

<<import>>
<<import>>

<<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

<<import>>

Figure 4.1: Structure of ontologies used in Limbo

The Device ontology, including its associated ontologies, are also overview-ed in D6.2
and some other details are given in D6.3, in the perspective of ontology model driven archi-
tecture (MDA). Here we discuss these ontologies in the perspective of Limbo design goals in
the scope of WP4. And our work in the ontology based web service generation with Limbo,

Version 1.4 17 of 44 December 28, 2007

Hydra

is also part of the MDA work.
The usage of the shown ontologies are summarized as followed:

1. LimboCongiguation ontology. It is used to configure the Limbo2 components, in order
to provide optimized valid combinations of different front end and back ends. Details
for the configuration are shown in Section 4.3.2. Limbo1 does not need this ontology.

2. Device ontology and associated hardware platform and software platform ontologies.
These ontologies are used to retrieve device specific information in order to gener-
ate resource-awareness code for a certain device. Details are also shown in Section
4.3.2. Limbo1 is using only the CPU information to decide the code generation type.

3. StateMachine ontology. This ontology is used to generate state and transition related
code. Currently only state based code is used, and action in states is linked with actual
service. Both Limbo1 and Limbo2 are using this ontology.

Service ontology and Error ontology are not used by Limbo.

4.2 Device Ontology and its associated ontologies

4.2.1 Device ontology

The Device ontology is used to define high level only information of a Hydra device, for ex-
ample device type classification(e.g. mobile phone, sensor), and run time properties such
as device error and its resolution information in order to support these self-recovery require-
ments. The Device ontology is based mainly on the concepts in AMIGO project ontolo-
gies(IST Amigo Project, 2006).

From now on, the legend for showing ontologies is shown in 4.2.

Ontology with

hidden children

Ontology with

hidden parents

Ontology with

hidden parents and

chinldren

Ontology
Parent-child

inheritance

Figure 4.2: Legend for ontology

Part of the Device ontology is shown in Figure 4.3, where the Hardware and .NET
ontologies are shown at the same time because of the import mechanism. This figure lists
the device types used in the first Hydra prototype, i.e. Pump, Lock, MobilePhone and PDA.

Using the OWL import mechanism, ontologies for hardware and software information
together with state machines for devices are linked under the Capability concept. The Hard-
ware ontology is based on the hardware description part from W3C deliveryContext ontol-
ogy1. It includes concepts such as Bluetooth, Network, CPU, Memory, Camera and so on,
and also relationships between them, for example ”hasCPU”.

To correspond to the review comments on the power consumption: We add some im-
provements in order to manage power consumption issues, for example the concept of
Power and datatype properties such as voltage, current and frequency of the power used by
a device. More information on network connections are added including the Bandwidth, and
its datatype properties such as averageDataRate and maxDataRate. WorkingMode concept
(sleep mode, awake, using the radio) and its datatype powerUsed. All these improvements
are helping us to achieve power-awareness as needed.

1Delivery Context Overview for Device Independence. http://www.w3.org/TR/di-dco/

Version 1.4 18 of 44 December 28, 2007

Hydra

Figure 4.3: Device ontology

4.2.2 Software platform related ontologies

The software platform related ontologies are important for the Limbo compiler. They should
provide the following functionalities in order to support the Limbo requirements:

• Software platform classification. As there are many concepts involved in the devel-
opment of web services for embedded device, it is very important to provide a clear
classification of these software in order to understand them. And more interestingly
is to classify related concepts in order to support the reasoning on type of a concept
which is not superficial. We will show examples later.

• Rigorous specification of platform dependencies. As there are lots of variants for soft-
ware platform, dependencies between them should be rigorously defined. For example
some programming languages need certain operating system support.

• Resource consumption relationships. As mentioned before, there are resource re-
straints for embedded devices, therefore it is important to know what kind of software
platform is more/less resource consuming than others, in order to choose an appro-
priate platform for the corresponding requirements.

Several ontologies are designed to model the software related concepts and their re-
lationships, including a SoftwarePlatform ontology, an OperatingSystem ontology, a Java
ontology and a .NET ontology. The software platform related ontologies are developed
based on (Wagelaar and Jonckers, 2005), where classifications and relationships among
concepts are re-arranged and re-organized. And more importantly the improvements make
the specification of resource consumption comparisons easier. Platform dependencies are
also added, for example, .NET can only run on Windows operating systems if there are no
other supporting software packages.

Version 1.4 19 of 44 December 28, 2007

Hydra

The SoftwarePlatform ontology defines VirtualMachine, Library, Middleware and object
properties such as requiresMoreMemory, reuqiresFasterCPU, and their reverse properties
requiresLessMemory and requiresSlowerCPU, provides and requires (certain feature or li-
brary). SoftwarePlatform ontology imports the OperatingSystem ontology, the Java ontology
and the .NET ontology as shown in Figure 4.4.

Figure 4.4: SoftwarePlatform Ontology

In the Java ontology we define concepts like JavaVM, JavaByteCode, JavaLibrary and
specify that a specific Java platform (e.g. CLDC) provides which Library, Rendering Engine,
etc. The classification of different versions of Java, such as J2EE, J2SE and MIDP1/MIDP2
is also presented in the ontology as shown in Figure 4.5.

The OperatingSystem ontology as shown in Figure 4.6 is used to specify operating
system related concepts and properties. The classification of an operating system is based
on its characteristics and version for example Win32/Win16. Such kind of classification could
facilitate the restrictions on which operating system consumes more memory than others.

The overall view of the device ontology showing details is shown in Figure 4.7. This
figure lists the device types used in the first Hydra prototype, i.e. Pump, Lock, MobilePhone
and PDA.

4.3 Ontology reasoning in Limbo

Pervasive web services for networked and embedded devices should consider many as-
pects, for example power consumption and resource usage. These information may be not
superficial, and sometimes very complex when combining with different wireless commu-
nication technologies, different hardware and software dependencies. Developers face the
problem of appropriate platform selection and lost in details like details of hardware/software,
communication power consumption details , etc. To help make reasonable decisions, ontol-
ogy reasoning is used in Limbo, especially in Limbo2.

Ontology reasoning can be used to provide additional and helpful facts about devices
and its hardware and software. These mainly include:

Version 1.4 20 of 44 December 28, 2007

Hydra

Figure 4.5: Java ontology

Figure 4.6: Operating system ontology

• Providing new classification information based on the subsumption reasoning of
description logic (Nardi and Brachman, 2003). An example is:
JavaVM v VitualMachine
JavaVM vMiddleware
JavaVM ≡ ∃runs.JavaByteCode
SuperWaba v Library
SuperWaba v ∃runs.JavaByteCode
Then SuperWaba v JavaVM

Version 1.4 21 of 44 December 28, 2007

Hydra

JavaVM is defined as something that can run JavaByteCode, and SuperWaba is nec-
essarily to run JavaByteCode, therefore SuperWaba is a subclass of JavaVM. This is
helpful for someone who is not familiar with SuperWaba. The same kind of reasoning
will classify LeJOS 2 as a kind of Java virtual machine.

• Choose the appropriate software platform according to the resources available. For
example, requiresMoreMemory is defined as a transitive property.
requiresMoreMemory(CDC CLDC)
requiresMoreMemory(J2SE CDC)
Then requiresMoreMemory(J2SE CLDC)
As requiresMoreMemory is transitive, this is used to derive that J2SE requires more
memory than CLDC. Here CDC, CLDC and J2SE are instances of its corresponding
class.

• Formally regulated component composition. The rigorous run time configuration is
conducted with LimboConfiguration ontology. Invalid configuration violating the built-in
rules will be reported at run time by a backend reasoning tool, in our case, RacerPro.

4.3.1 Getting device information

With the help of an ontology frontend, the Limbo compiler can obtain general device informa-
tion, such as the device name, model name and device type from the Device ontology. The
CPU and memory information is obtained from the Hardware ontology. Detailed informa-
tion on operating system is obtained from the OperatingSystem ontology. And Java virtual
machine, Java library information is retrieved from the Java ontology. Other software pack-
ages information is got from the SoftwarePlatform ontology for example third party software
packages available for the device, for example SuperWaba.

4.3.2 Formal configuration with LimboConfiguration ontology

Limbo2 can have different backends and frontends. Not all the combinations of the frontend
and backend in Limbo are valid. Either the SOAP frontend or REST frontend can be chosen
at one run. There exist complex options for the backends. The parser generator back-
end can choose one from several different programming platforms, for example JavaSE,
JavaME, .NET or LeJOS. Besides the parser generation, other generation work can also be
conducted at the same time, for example the generation of client side stub and server side
skeleton, and transport between the client side and a server side.

We define a configuration for Limbo as the valid combinations of frontend, repository and
backends that could be used to compile and generate correct web services according to the
specific device information, such as CPU and operating system. A feature model(Czarnecki
and Eisenecker, 2000) can be used to visually show the configurations of Limbo (Figure 4.8).
But the feature model could not easily show some of the hidden dependencies between
backends. For example, client side and server side (including server, skeleton, controller)
generation, and also state machine generation should be consistent with the chosen parser
language, i.e. they should use the same language in one Limbo compiling run. For OSGi,
there is no need for the Server generator as a web server is built in the OSGi framework.

Therefore it is very important to rigorously regulate the valid combinations of different
Limbo components and resolve dependencies among them, no matter combinations are

2LeJOS homepage. http://lejos.sourceforge.NET/

Version 1.4 22 of 44 December 28, 2007

Hydra

explicit in the feature model or implicit. As the Hydra project is using ontologies to share
knowledge across all the software to be developed, this naturally motivates us to the explo-
ration of using OWL to achieve validation and verification of these configurations. As Wang
proposed in (Wang et al., 2005), we use OWL DL ontologies to formally specify what the
legal feature combinations are.

The basic idea is: for every node in the feature diagram, to use a companion rule class
to specify its regulations including how each of its child features are related to this node, as
well as restrictions for its combination with all other features. The conjunction/disjunction of
“someValuesFrom” restrictions over hasFeatureX (FeatureX stands for a feature node in the
feature diagram, for example, hasRESTFrontend) object properties can be used to model
different type of features. For example the “Alternative” feature for the WSDL frontend is
specified with the following axioms:
WSDLFrontendRule v (∃hasRESTFrontend.
RESTFrontend) t (∃hasSOAPFrontend.SOAPFrontend)
WSDLFrontendRule v ¬(∃hasRESTFrontend.
RESTFrontend) u (∃hasSOAPFrontend.SOAPFrontend))

This means that either REST Frontend or SOAP frontend will be used, but not both. And
coming to the OSGi controller as an example, we use the following to restrict its exclusive
relationship with the .NET parser backend:
OSGiControlerRule v ¬(∃hasDotNetParserBackend.
DotNetParserBackend)

We can then use this ontology to verify whether a feature combination is valid or not. As
an example in Figure 4.9, if both an OSGi controller and a .NET parser backend are chosen
for a configuration:
E_Con f ig v ∃hasBackend.Backend
E_Con f ig v ∃hasDotNetParserBackend.
DotNetParserBackend
E_Con f ig v ∃hasFrontend.Frontend
E_Con f ig v ∃hasOSGiControler.OSGiControler
E_Con f ig v ∃hasRepository.Repository

Then RacePro3 will report that this configuration of Limbo is inconsistent, because the
combination of the OSGi controller and the .NET backend contradicts to the rules in the
Limbo configuration ontology which result in an invalid configuration.

Why SWRL rules

For situations where some complex rules are needed to specify certain restrictions, we
are using SWRL4 to develop these rules, and the SWRL APIs from Protege-owl5 for the
implementation.

”SWRL is intended to be the rule language of the Semantic Web. SWRL is based on
the OWL Web Ontology Language. It allows users to write rules to reason about OWL
individuals and to infer new knowledge about those individuals. A SWRL rule contains an
antecedent part, which is referred to as the body, and a consequent part, which is referred
to as the head. Both the body and head consist of positive conjunctions of atoms. SWRL
does not support negated atoms or disjunction. Informally, a SWRL rule may be read as

3RacerPro homepage: http://www.racer-systems.com/
4SWRL: A Semantic Web Rule Language Combining OWL and RuleML. http://www.w3.org/Submission/SWRL/
5protege homepage. http://protege.stanford.edu/ and Protege-SWRL tab: http://protege.cim3.net/cgi-

bin/wiki.pl?SWRLTab

Version 1.4 23 of 44 December 28, 2007

Hydra

meaning that if all the atoms in the antecedent are true, then the consequent must also be
true.”

SWRL is built on OWL DL and shares its formal semantics. It is more expressive than
OWL DL alone. And all variables in SWRL rule bind only to known individuals in an ontology
in order to develop a DL-Safe rules to make them decidable.

Configuration algorithm for Limbo

To be practical for Limbo to use the configuration techniques proposed in (Wang et al., 2005),
we go a step further by importing the Device ontology in order to configure Limbo compiler
according to the hardware and software details of a specific device. Object properties (re-
quireCPU, requireOS, requireVM and requireLibrary) are also added to the configuration
ontology in order to specify a backend’s requirements for the detailed CPU, operating sys-
tem, virtual machine and libraries. The Limbo configuration algorithm is shown as an UML
activity diagram in Figure 4.10. We are not showing the handling of third party libraries
which can be handled in the same way as explained later.

Step 1 Checking CPU/OS/VM details

When a compiling task is needed for a certain device, first the detailed software and
hardware information, especially CPU, operating system, virtual machine will be re-
trieved using the ontology frontend. In SWRL rules, the symbol ∧ means conjunction,
and ?x stands for a variable, and symbol→ means implication.

Take the Nokia N80 as an example, its operating system information is checked using
the following SWRL query:
device : MobilePhone(device : NokiaN80) ∧ device :
hasSo f tware(device : NokiaN80, ?s) ∧
So f twarePlat f orm : hasVirtualMachine(?s, ?vm) ∧
Java : hasMIDP2version(?vm, ?version)→
sqwrl : select(device : NokiaN80, ?s, ?vm, ?version)

Here “device” and “SoftwarePlatform” are namespaces for the Device ontology and
the SoftwarePlatform ontology respectively. The execution of this query will give us
these results:
(?s = So f twarePlat f orm : So f twarePlat f orm_N80) and (?vm = Java : MIDP2_2),
(?version = 2). Software platform instance for N80 is defined with SoftwarePlat-
form_N80, and N80 virtual machine is MIDP2_2, which means that it supports MIDP2
based on CLDC1.1 (MIDP2_1 is defined as the MIDP2 based on CLDC1.0).

A general rule for checking both mobile phone CPU and virtual machine is as followed:
device : MobilePhone(?device) ∧ device : hasHarware(?device, ?hardware) ∧ Hardware :
primaryCPU(?hardware, ?cpu) ∧ Hardware : cpuName(?cpu, ?cpuname) ∧ device :
hasSo f tware(?device, ?so f t) ∧ So f twarePlat f orm : hasVirtualMachine(?so f t, ?vm) →
sqwrl : select(?device, ?cpuname, ?vm)

Step 2 Iteratively checking the backends’ required CPU/OS/VM

After the detailed information on CPU, operating system and virtual machine has been
obtained from related ontologies, then this information will be checked iteratively for

Version 1.4 24 of 44 December 28, 2007

Hydra

whether this version of CPU, operating system and virtual machine are required for the
leaf backends in the feature diagram. This kind of information is stored within instances
of the leaf backends associated with the requireCPU, requireOS and requireVM object
properties. The main loop control variable is the list of all leaf backends in the feature
model. An example for the N80 mobile phone is:
JavaMEParserBackendRule(?r) ∧ requireVM(?r, ?vm)
∧ Java : hasMIDP2version(?vm, ?version)
→ sqwrl : select(?r, ?vm, ?version)

It returns (?r = JavaMEParserBackendRule_1) and (?vm = Java : MIDP2.0), (?version =
2). We define MIDP2.0 as the MIDP2 which can be based on CLDC1.0 or CLDC1.1.
From these two queries, we can see that N80 needs a JavaMEParserBackend.

Step 3 Resolving choices using user preferences

There are situations where we can get multiple options for backends. For example,
Motorola MPx220 has Windows Mobile as its operating system, but at the same time
it has J2ME MIDP2_1 (MIDP 2.0, CLDC 1.0), which can be got from the following two
query rules.
device : MobilePhone(device : MotorolaMPx220) ∧
device : hasSo f tware(device : MotorolaMPx220, ?s) ∧ So f twarePlat f orm :
hasOperatingSystem(?s, ?os)
→ sqwrl : select(device : MotorolaMPx220, ?s, ?os)

device : MobilePhone(device : MotorolaMPx220) ∧
device : hasSo f tware(device : MotorolaMPx220, ?s) ∧ So f twarePlat f orm :
hasVirtualMachine(?s, ?vm)→ sqwrl : select(device : MotorolaMPx220, ?s, ?vm)

Now we have enough information to compare with the end user group preferences.
Then the generation can go ahead with the chosen Ṅet CF or J2ME platform.

Step 4 Resolving choices based on CPU/Memory usage
We are using RacerPro as the backend ontology reasoning tool. Therefore, some
of the reasoning are implemented with nRQL(new Racer Query Language). For
situations where memory and CPU usage should be decided, for example J2SE,
CDC and CLDC as options, we will choose the one that consumes less memory and
requires a slower CPU for small devices as default. For example, we could retrieve all
requireMoreMemory pairs with the following nRQL query.
(retrieve (?x ?y)(?x ?y requireMoreMemory))

And we could also retrieve only the inferred requireMoreMemory pair with the following
nRQL query.
(retrieve (?x ?y)(and(?x ?y requireMoreMemory)(neg
(and(?x ?y requireMoreMemory)(neg (project − to
(?x ?y)(and(?x ?z requireMoreMemory)
(?z ?y requireMoreMemory))))))))

Here the requireMoreMemory should be the URI containing the requireMoreMemory
object property in the SoftwarePlatform ontology and we deliberately show only re-
quireMoreMemory itself in order to save space.

Version 1.4 25 of 44 December 28, 2007

Hydra

Step 5 Resolve options based on power/energy policy. These rules may decide whether to
choose a proxy implementation or running embedded web service directly on device.
The energy rules have big consequences in this respect. An example rule to check
the battery level is like this:
device : MobilePhone(?device) ∧ device : hasHarware(?device, ?hardware) ∧ Hardware :
primaryBattery(?hardware, ?battery) ∧ Hardware : batteryLevel(?battery, ?level) → sqwrl :
select(?device, ?level)

Similarly, we can check the power consumption of various bearers supported by a mo-
bile phone, and choose a corresponding bearer according to the power consumption
expectation. device : MobilePhone(?device) ∧ device : hasHarware(?device, ?hardware) ∧
Hardware : supportedNetworkBearers(?hardware, ?bearers) ∧ Hardware :
networkPowerUsed(?bearers, ?power)→ sqwrl : select(?device, ?bearers, ?power)

4.4 State Machine

4.4.1 State machine ontology

A common conception of embedded devices is that they are usually designed and operated
as state machines. In line with this, we make use of a state machine for a device to achieve
a number of objectives.

• Generation of stub code for the state transitions.

• Specification of complex context rules and diagnosis rules based on states and run-
ning result of an action.

• Supervising the health status of a running system.

A failure can be caused by an earlier state transfer failure. Therefore some transitions
and states can be used to explain the observed malfunctions and effectively identify faults
in the device, which is of great value for helping the self-diagnosis and self-recovery.

4.4.2 Development of the state machine ontology

To achieve these goals, we develop a state machine ontology based on Dolog’s work (Dolog,
2004). To accomplish the notification of state changes and actions execution results, a
publish/subscribe event manager is used.

We show the state machine ontology for the thermometer (UML state machine shown in
Figure 3.3) in Figure 4.11.

We changed Dolog’s work in several aspects: first, we add a datatype property isCurrent
in order to indicate whether a state is current or not with the publish/subscribe mechanism;
secondly, we add a doActivity object property to the State in order to specify the correspond-
ing activity in a state and this makes the state machine complete; third, we add a datatype
property hasResult to the Action (including activity) concept in order to check the execution
result at run time. The action results are also updated using the publish/subscribe mech-
anism just like the updating of states. This facilitates the specification of diagnosis rules
based on both the state and activity results. We also add properties to store 3 historical
results and their time stamp.

Version 1.4 26 of 44 December 28, 2007

Hydra

In order to keep track of the action result and make appropriate diagnosis, we have one
state machine instance for every device. But the generated state machine stub should be
suitable for every device, or one type of device. Therefore, we add a dummy state machine
for every device type and use this generic state machine to generate code for this type of
device, which shares this state machine. The generated state machine stub is as follows.
The measuring state of the thermometer is linked to the action service:

package com.eu.hydra.flamenco.statemachine;
...

public class StateMachineStub_Thermometer{
...

public void ThermometerStopping(){
event ev = new event();
ev.parts_add(new part("DeviceType", "Thermometer"));
ev.parts_add(new part("State", "ThermometerStopping"));
ev.parts_add(new part("StateAction", "ThermometerStop"));
ev.parts_add(new part("DeviceID", this.deviceID));
eventManager.publish("statemachine/statechange", ev);

}

public void ThermometerStarting(){
...

}

public void ThermometerMeauring(){
...

}

...
}

4.4.3 SWRL rules for diagnosis and complex context specification

We are using SWRL together with the state machine ontology to achieve the former men-
tioned objectives. For example, rules with SWRL for checking device status and diagonosis
can be written as followed.

• Checking how many states an instance of the state machine for a device has:
StateMachine(?sm) ∧ hasStates(?sm, ?s)→ sqwrl : select(?sm) ∧ sqwrl : count(?s)

• Checking the current state that isCurrent is set to ”true”.
StateMachine(?sm) ∧ hasStates(?sm, ?s) ∧
isCurrent(?s, ”true”)→ sqwrl : select(?sm, ?s)

• Diagnosis on the fly of the device working condition. For example, we can check the
validImage action result in order to decide the working status of the camera with the
following rule:
StateMachine(?sm) ∧ hasStates(?sm, ?s) ∧

Version 1.4 27 of 44 December 28, 2007

Hydra

doActivity(?s, ?ac) ∧ actionResult(?ac, ?r)→
sqwrl : select(?sm, ?s, ?ac, ?r)

If the returned image is valid, then the camer is working well. This checking can only
be executed when processingImage state is the current state.

The SWRL provides builtin math, string, comparisons that can be used to specify extra
contexts, which are not possible or very hard to achieve by the present OWL itself. For
example, we can specify a farAwayFromHome context (e.g. 5 miles away from home using
the GPS distance calculation formula 6) with the following two rules:
distanceFromHome(?p, ?distance) ∧
swrlb : greaterThan(5, ?distance)
→ f arAwayFromHome(?p, true) ...(1)

person : Person(?p) ∧ hasHome(?p, ?h) ∧
hasLocation(?h, coord : LocationCoords1) ∧
coord : latitude(coord : LocationCoords2, ?lan2) ∧ coord : latitude(coord : LocationCoords1, ?lan1) ∧
swrlb : subtract(?rsublan, ?lan1, ?lan2) ∧ swrlb : multiply(?squaresublan, ?rsublan, ?rsublan) ∧
coord : longitude(coord : LocationCoords2, ?long2) ∧ coord : longitude(coord :
LocationCoords1, ?long1) ∧
swrlb : subtract(?rsublong, ?long1, ?long2)∧swrlb : multiply(?squaresublong, ?rsublong, ?rsublong)∧

swrlb : add(?add, ?squaresublong, ?squaresublan) ∧
swrlm : sqrt(?distance, ?add)
→ distanceFromHome(?p, ?distance) ...(2)

As the current SWRL APIs are not supporting OWL description language expressions as
SWRL specification promised, and it can not work on the inferred model, we will extend our
work after the new SWRL APIs released which will support all those missing functionalities
and ease the design of general rules at the class level. We are also working together with
the APIs developer to improve the stability of these APIs.

This part of work will be elaborated in D4.3.

4.5 Ontology tools experience

We are using a number of ontology related tools in WP4.

4.5.1 Ontology development tools

For the development of ontologies, we are Protege3 and Protege4, together with XMLSpy
in order to sort out some problems for example hidden datatype redefinitions. Protege 3
is becoming cumbersome because its protege-owl is based on the Frame implementation.
However, Protege 3 has many plugins and is the most popular tool for ontology development.
Furthermore, it has good user support through its mailing list. Protege 4 has a better archi-
tecture but is not functionally complete. XMLSpy can be used to filter out some XML-related
editing and validation which is not conveniently provided by Protege.

6How to calculate the distance between two points on the Earth. http://www.meridianworlddata.com/Distance-
Calculation.asp

Version 1.4 28 of 44 December 28, 2007

Hydra

4.5.2 Ontology reasoning tools

RacerPro which is free for academic usage, with built-in support for Location relationship
reasoning; Pellet, open source, and builtin support from Protege4 without the need of DIG.
The DIG interface has many problems at present stage and there seem to be no promises
for a new version in the near future.

4.5.3 Ontology programming APIs

We are using the Jena, Protege-owl and SWRL APIs in WP4. Protege-owl is chosen be-
cause it is necessary for SWRL, and Jena is used by Protege as its backend for ontology
loading and saving.

4.5.4 Rule engine

Jess is providing education license although it is not open source. Jess is used because
SWRL currently needs it to translate SWRL rules back and forth to Jess rules.

4.5.5 Tool experiences

• Too often Protege (v3.3 or before, even v3.4) will throw an error and the work is not
able to be saved anymore.

• Too often the value for a string can not be saved, and one has to use Protege 4 or a
text editor to finish this input.

• The DIG interface is very often not stable for large ontologies.

Version 1.4 29 of 44 December 28, 2007

Hydra

Figure 4.7: Device ontology details

Version 1.4 30 of 44 December 28, 2007

Hydra

Limbo

FrontEnd

WSDL

Frontend

Backend

SOAP

FrontEnd

Parser

Generator

JavaSEParser

Backend

REST

Frontend

Repository

DotNetParser

Backend

Mandatory

Optional

Alternative

OR

Legend

JavaMEParser

Backend

LeJOSParser

Backend

Serverside

Generator

ClientSide

Generator

Transport

Generator

Contoler ServerSkeleton

StateMachine

Generator

JavaSE DotNetJavaME OSGi ...

Figure 4.8: Feature model for Limbo

Figure 4.9: Limbo configuration reasoning

Version 1.4 31 of 44 December 28, 2007

Hydra

check CPU get Backends for required CPU

Check whether the CPU/OS/

Virtual Machine (VM) is a

COMPULSORY requirement

for a backend and get the

number of these backends

[list.length=1]

check OS get Backends for required OS

check VM get Backends for required VM

add to Backend list

List length

resolve options based on end user preference

resolve options based on CPU/memory usage

resolve options based on power/battery policy

[NoCPU]

ProxyGeneration

Options including proxy/

embedded_service and

their implementation

platform

Figure 4.10: Limbo configuration algorithm

Figure 4.11: State machine Ontology

Version 1.4 32 of 44 December 28, 2007

Hydra

5 Evaluation of Limbo

We have evaluated the current version of Limbo according to the evaluation framework of
one.world (?). This entails evaluating

1. Completeness: can useful services be generated?

2. Performance: is performance acceptable, i.e., in the Hydra case, are the generated
services sufficiently ressource efficient?

3. Complexity and utility : how hard is it to create services and can others build upon it?

We now turn to each of these.

5.1 Completeness

Our main vehicle for evaluating “completeness” in the sense of whether useful services can
be generated has been through the generation of services for the first Hydra prototype.
Here services were primarily created by a member of the UAAR Hydra team who has not
participated in the development of Limbo (4 services) and by a UAAR member of the Limbo
compiler team (1 service). The generated services were:

• Nokia N80 SMS service. This service used the Nokia Raccoon gateway1 (but not the
Apache web server) for Nokia S60 mobile phones. The service uses Limbo’s midlet
generation option and runs a Limbo-generated web server

• Pico TH03 thermometer service. This and the following services run as proxies on an
OSGi gateway and interface with devices via device-specific protocols

• Grundfos Magna 32 pump service

• Abloy EL582 door lock service

For all services, Hydra helped in hiding web service complexity and in generating efficient
web services. State machine generation was not used in this case since it was not imple-
mented. State Machine generation has been evaluated later with the Pico TH03 thermome-
ter, see Deliverable 4.3 (Hansen and Zhang, 2007) for more detail.

5.2 Performance

The performance evaluation of Limbo has been targeted on the resource utilization of gen-
erated web services to that web services generated by other compilers. Here we report on
time and memory usage measurements compared to Apache Axis2. The purpose was not
to compare to Apache Axis per se since this was designed for a multithreaded server envi-
ronment, but rather to see that Limbo-generated services used significantly fewer resources
than a popular web service framework.

For measuring resource utilization, we used a setup with a SOAP-based web service
implementing an SMS service. This web service was requested by a Limbo-generated

1Nokia Mobile Web Server. http://wiki.opensource.-nokia.com/projects/Mobile_Web_Server
2Apache Axis. http://ws.apache.org/axis

Version 1.4 33 of 44 December 28, 2007

Hydra

client and implemented using Apache Axis and using Limbo on both Java SE and Java ME
(on a Nokia N80 mobile phone). For the Apache Axis and Limbo SE implementations a PC
(an Apple Mac Book Pro 15” with a 2.33 GHz Intel Core 2 Duo processor, 2 GB 667 MHz
DDR2 SDRAM memory, MAC OS X Version 10.4.10 as operating system). Communication
was done over a local area network for the PC case and using Nokia’s Raccoon software as
a gateway to overcome firewall problems in the Nokia N80 case.

Startup 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Time usage

Limbo ME

Limbo SE

Apache Axis

m
s

Figure 5.1: Limbo time measurements

Figure 5.1 shows the result of our time measurements. The figure shows the total exe-
cution time for five consecutive calls made to the SMS web service. For all implementations
there is a high start-up cost due to the establishment of sockets – in particular so in the Java
ME case. The Limbo ME implementation is also orders of magnitudes slower than the SE
implementations, a fact that is due to the network setup of the Nokia N80 – and to the fact
that the ME implementation actually sends an SMS – since the Limbo SE and Apache Axis
implementations are comparable with respect to time usage.

Figure 5.2 shows the memory measurements of Limbo and Apache Axis. Both the Limbo
SE and the Limbo ME versions use significantly less memory than Apache Axis. In the SE
cases, the measurements were made using a JMX agent to measure the maximum amount
of memory used during processing of requests excluding the Java environment itself. In the
ME case, we measured maximum memory with SUN’s Wireless Tool Kit (Version 2.5) so
that the service ran in an emulator for the memory measurements. On average, the Limbo
ME service used 362.4 Kb memory. In conclusion, the resource usage of Limbo generated
services is significantly smaller than that for Apache Axis-generated services.

5.3 Complexity and utility

Complexity and utility were evaluated by members of the Hydra consortium that had not
participated in the development of Limbo. Two partial evaluations were made:

1. Evaluation of ontology construction

Version 1.4 34 of 44 December 28, 2007

Hydra

1 2 3 4 5
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

Memory usage

Limbo ME

Limbo SE

Apache AxisK
B

Figure 5.2: Limbo memory measurements

2. Evaluation of code generation

For both, a case of implementing a blood pressure service on an HTC P3300 smartphone3

was executed. A blood pressure measurement device is imagined to be connected to the
smartphone. In the concrete evaluation, we focussed on the smartphone and a blood pres-
sure measurement device was not connected.

In Java-like pseudocode, the intended service would look like the following:

public interface SmartphoneBPService {
String getSmartphoneBP(String monitorId);

}

The associated WSDL file is shown in Appendix A. The associated state machine is shown
in Figure 5.3.

5.3.1 Complexity and utility of ontology construction

It was possible to create a model of the HTC P3300 device including a state machine within
a day of work for an ontology engineer unfamiliar with the device and the associated service.
The ontology was created using the Topbraid Composer ontology tool. The additions to the
Hydra device ontology are shown in Appendix B. An overview is shown in Figure 5.4 on
page 38.

Generally, the ontologies for software and hardware device properties need to be very
well documented. The model is highly technically specific. For a developer, who is not
familiar with the domain area, it is very hard (or in some cases even impossible) to create
suitable representation of device properties, without precise specification of meaning of the
concepts. Thus these models need to be created by someone who is both familiar with
ontologies and the specific device. Possibly tool support (e.g., through a specific IDE for
this) could be used.

3http://www.europe.htc.com/en/products/htcp3300.html

Version 1.4 35 of 44 December 28, 2007

http://www.europe.htc.com/en/products/htcp3300.html

Hydra

Figure 5.3: Blood pressure service state machine

The comments, which have arisen from the modelling process of the HTC P3300 device,
can be summarized as follows:

• Better classification is needed of some concepts. It was, e.g., needed to create the
new operating system (OS) instance for Windows Mobile 5.0 PocketPC. The attempt
to classify the new operating system to the existing OS hierarchy showed that with the
actual OS hierarchy (concretelly for WindowsMobile) it was hard to decide whether to
choose some existing OS class or if it is better to create the new OS class. Finally, the
new OS class was created (as the existing OS concepts seemed not be suitable) with
the new OS instance. It would be helpful to create an OS hierarchy reflecting, e.g.,
the types of OSs, which could contain instances representing the versions of specific
OSs. An OS hierarchy should maybe also reflect the various hardware platforms, on
which the OSs can run. The suitable classifications can be developed with the help of
experts

• High-quality documentation of concepts is needed. The range of some properties,
e.g., require better comments of usage. For example, properties displayHeight and
displayWidth have range defined as xsd:string. Thus, the developer is not able to
decide, if the value should be e.g. 100 or 100px. As far as this information could be
potentionally important, for example, to make decisions of device capability to display
images (or other media) of several size (or resolution), usage of such properties should
be well defined

• Parts of the model is conceptually confusing. For example, the hierarchy of concepts
in the StateMachine ontology contains the formulation that every concept, including
the StateMachine class, is the subclass of StateMachinePart concept. Thus, it can be
inferred, for example, that StateMachine is the StateMachinePart.

This will be taken into account in the next iteration of developing the Limbo tool.

5.3.2 Complexity and utility of code generation

The Limbo compiler has been successfully used to generate small applications to test their
compatibility with Windows Mobile-Based Smartphone and EclipseME-generated classes.

Version 1.4 36 of 44 December 28, 2007

Hydra

The next step will be using Limbo in specific applications for the second iteration prototype.
The following comments have arisen through the code generation process:

• Input indications are required in some sections. There are different classes in which
the developer must enter new lines or modify the existing ones to create his own mi-
dlets, it would be very useful to at least mark them for a faster application development.

• Code comments are needed. The generated classes could include a more detailed
comments structure. In this way it will be easier for the developer to understand each
step and the whole application

• JAD and JAR manifest configuration assistance would be good. There are different
versions of specific JME components which can make a midlet work or not work in
different devices. For example, MIDP2.1 does not work with current HTC P3300 Virtual
Machine, so a change in the manifest or the virtual machine must be made. Knowing
what exactly works in which environment makes code generation faster.

• EclipseME plugin and Limbo integration would be good. This is not a high priority
requirement, but it would be very useful to integrate the JME Eclipseme plugin and
Limbo-based class generation in next versions.

5.4 Evaluation conclusions

The Limbo compiler has been shown to be useful, performant and of utility in the contexts in
which it has been evaluated. Clearly there is a need for future work based on the evaluation:

• Better documentation is needed both for the compiler per se but also for the ontologies
used in the compiler

• Further work is needed on the structure and the concepts of the ontology

• The structure of generated code could be improved and further documented

Further, combined with the requirements and design goals for Limbo, additional work is
required in the area of

• Fully utilizing ontologies and reasoning at compile time

• Implementing the Limbo2 architecture

• Further compilation targets including .NET and REST-based targets

• Improved support for the Hydra middleware architecture including the UPnP-based
discovery algorithm

Overall we believe that the first version of Limbo is a step in a right direction towards facili-
tating the development of embedded web service.

Version 1.4 37 of 44 December 28, 2007

Hydra

Figure 5.4: HTC P3300 ontology overview

Version 1.4 38 of 44 December 28, 2007

Hydra

6 Conclusion and future work

This deliverable is a companion to the first version of the Hydra Limbo tool. We have pre-
sented the design goals and architecture of Limbo as an important part of the Hydra SDK.
On the other hand, the deliverable has focused on ontologies and shown how the usage of
ontologies can add value to Limbo in the terms of both configuration and runtime semantic
support.

Furthermore, the deliverable has presented results from evaluating Limbo in several
ways (by building a range of services, by evaluating performance, and by evaluating the
usage of ontologies). The evaluations have proved that the design of Limbo is successful,
and Limbo is useful for supporting the development of (embedded) services based on the
Hydra middleware.

For the next iteration on Limbo (due month 24), there are a number of directions we are
pursuing:

• Implementing the Limbo2 architecture and its related semantic reasoning

• Further alignment of Limbo-generated services with the Hydra middleware including
the Hydra discovery protocol, network architecture, and semantics approach when
decided

• Investigating the generation of services for more platforms (as needed by the Hydra
prototypes). This pertains to both hardware platforms (currently, services are created
only for hardware platforms that support Java SE and Java ME) and software platforms
(such as Microsoft .NET)

• Investigating the usage of WS-*-compatible interfaces in the Limbo-generated ser-
vices. This is the road that, e.g., Devices Profile for Web Services 1

1http://schemas.xmlsoap.org/ws/2006/02/devprof/

Version 1.4 39 of 44 December 28, 2007

http://schemas.xmlsoap.org/ws/2006/02/devprof/

Hydra

A HTC P3300 Blood Pressure service WSDL file

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:hydra="http://hydra.eu.com"
targetNamespace="http://hydra.eu.com">

<hydra:message name="sendBPRequest">
<part name="monitorID" type="xs:string"/>

</hydra:message>

<message name="sendBPResponse">
<part name="BloodPressure" type="xs:string"/>

</message>

<portType name="BPServicePort">
<operation name="getSmartphoneBP">

<input message="hydra:sendBPRequest"/>
<output message="hydra:sendBPResponse"/>

</operation>
</portType>

<binding name="BPServiceBinding" type="hydra:BPServicePort">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getSmartphoneBP">

<soap:operation soapAction="http://hydra.eu.com/SmartPhone/
getSmartphoneBP" style="rpc"/>

<input>
<soap:body use="literal"/>

</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>

<service name="SmartphoneBPService">
<port name="BPServicePort" binding="hydra:BPServiceBinding">

<soap:address location="http://hydra.eu.com/SmartPhone"/>
</port>

</service>
</definitions>

Version 1.4 40 of 44 December 28, 2007

Hydra

B HTC P3300 Ontologies

B.1 Device ontology

<InfoDescription rdf:ID="HTCP3300Info">
<modelName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

P3300
</modelName>
<manufacturerURL rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

http://www.europe.htc.com/en/products/htcp3300.html
</manufacturerURL>
<manufacturer rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

HTC
</manufacturer>
<friendlyName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

HTCP3300
</friendlyName>

</InfoDescription>

<MobilePhone rdf:ID="HTCP3300">
<hasStateMachine

rdf:resource="file:./resources/StateMachine.owl#HTCP3300_BloodPressure"/>
<hasHarware

rdf:resource="file:./resources/Hardware.owl#DeviceHardware_HTCP3300"/>
<hasSoftware

rdf:resource="file:./resources/SoftwarePlatform.owl#SoftwarePlatform_HTCP3300"/>
<info rdf:resource="#HTCP3300Info"/>

</MobilePhone>

B.2 State Machine ontology

<StateMachine rdf:ID="HTCP3300_BloodPressure">
<hasStates rdf:resource="#BloodPressureInactive"/>
<HasTransitions

rdf:resource="#T_BloodPressureMeasurementResponse"/>
<hasStates>

<Initial rdf:ID="BloodPressureInit"/>
</hasStates>
<HasTransitions>

<Transition rdf:ID="T_BloodPressureMeasurementRequest">
<Target rdf:resource="#BloodPressureMeasurement"/>
<Source rdf:resource="#BloodPressureActive"/>
<TransitionName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>BloodPressureMeasurementRequest</TransitionName>

</Transition>
</HasTransitions>
<HasTransitions rdf:resource="#T_BloodPressureResponse"/>
<hasStates rdf:resource="#BloodPressureMeasurement"/>
<HasTransitions rdf:resource="#T_BloodPressureRequest"/>
<hasStates rdf:resource="#BloodPressureActive"/>

Version 1.4 41 of 44 December 28, 2007

Hydra

<HasTransitions>
<Transition rdf:ID="T_BloodPressureLaunchService">
<TransitionName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>BloodPressureLaunchService</TransitionName>
<Target rdf:resource="#BloodPressureInactive"/>
<Source rdf:resource="#BloodPressureInit"/>

</Transition>
</HasTransitions>
<HasTransitions rdf:resource="#T_BloodPressureStopService"/>
<hasStates rdf:resource="#BloodPresureFinal"/>

</StateMachine>

B.3 Hardware ontology

<DeviceHardware rdf:ID="DeviceHardware_HTCP3300">
<extensionMemory>
<MemoryUnit rdf:ID="MemoryUnit_HTCP3300_Card">
<totalMemorySize rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>512000000</totalMemorySize>
<removableMemory rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</removableMemory>

</MemoryUnit>
</extensionMemory>
<builtInMemory>
<MemoryUnit rdf:ID="MemoryUnit_HTCP3300_Internal">
<totalMemorySize rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>128000000</totalMemorySize>
<removableMemory rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>false</removableMemory>

</MemoryUnit>
</builtInMemory>
<display>
<Display rdf:ID="Display_HTCP3300">
<supportsImages rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</supportsImages>
<supportsColor rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</supportsColor>
<displayWidth rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>240px</displayWidth>
<displayHeight rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>320px</displayHeight>

</Display>
</display>
<camera>
<Camera rdf:ID="Camera_HTCP3300"/>

</camera>
<primaryBattery>
<Battery rdf:ID="Battery_HTCP3300"/>

</primaryBattery>
<primaryCPU>
<CPU rdf:ID="OMAP850">
<rdfs:comment>Texas Instruments OMAP850 200 MHz processor</rdfs:comment>

Version 1.4 42 of 44 December 28, 2007

Hydra

<cpuName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>OMAP850</cpuName>

</CPU>
</primaryCPU>
<supportsAudioOutput rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</supportsAudioOutput>
<numberOfSoftKeys rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>0</numberOfSoftKeys>

</DeviceHardware>

B.4 Software platform ontology

<SoftwarePlatform rdf:ID="SoftwarePlatform_HTCP3300">
<hasVirtualMachine rdf:resource="file:./resources/Java.owl#MIDP2.0"/>
<hasOperatingSystem

rdf:resource="file:./resources/OperatingSystem.owl#WindowsMobile5.0PocketPC"/>
</SoftwarePlatform>

Version 1.4 43 of 44 December 28, 2007

Bibliography

Czarnecki, K. and Eisenecker, U. (2000). Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley. NY, USA.

Dolog, P. (2004). Model-driven navigation design for semantic web applications with the uml-
guide. Engineering Advanced Web Applications, In Maristella Matera and Sara Comai
(eds.).

Hansen, K. M. and Zhang, W. (2007). Self-* properties SDK prototype and report. Technical
Report D4.3, Hydra Consortium. IST 2005-034891.

IST Amigo Project (2006). Amigo middleware core: Prototype implementation and docu-
mentation, deliverable 3.2. Technical report, IST-2004-004182.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005). Taxonomy of XML schema lan-
guages using formal language theory. ACM Transactions on Internet Technology (TOIT),
5(4):660–704.

Nardi, D. and Brachman, R. (2003). The Description Logic Handbook-Theory, Implementa-
tion and applications.

Wagelaar, D. and Jonckers, V. (2005). Explicit platform models for mda. In 8th Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages 367–
381, Montego Bay, Jamaica. LNCS 3713, Springer-Verlag.

Wang, H., Li, Y. F., Sun, J., Zhang, H., and Pan, J. (2005). A Semantic Web Approach to
Feature Modeling and Verification. In 1st Workshop on Semantic Web Enabled Software
Engineering (SWESE’05), Galway, Ireland. LNCS, Springer-Verlag.

44

	Introduction
	Purpose, context, and scope of this deliverable
	Structure of the deliverable

	Design goals of Limbo
	Design and architecture
	The compilation process
	Implementing services
	The runtime of services
	Limbo architecture
	Limbo design vs. design goals

	Ontologies in Limbo
	Ontology structure
	Device Ontology and its associated ontologies
	Device ontology
	Software platform related ontologies

	Ontology reasoning in Limbo
	Getting device information
	Formal configuration with LimboConfiguration ontology

	State Machine
	State machine ontology
	Development of the state machine ontology
	 SWRL rules for diagnosis and complex context specification

	Ontology tools experience
	 Ontology development tools
	 Ontology reasoning tools
	 Ontology programming APIs
	 Rule engine
	Tool experiences

	Evaluation of Limbo
	Completeness
	Performance
	Complexity and utility
	Complexity and utility of ontology construction
	Complexity and utility of code generation

	Evaluation conclusions

	Conclusion and future work
	HTC P3300 Blood Pressure service WSDL file
	HTC P3300 Ontologies
	Device ontology
	State Machine ontology
	Hardware ontology
	Software platform ontology

