
Contract No. IST 2005-034891

Hydra
Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

D4.7 Embedded service DDK prototype and report

Integrated Project
SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium 24 February, 2009- version 1.1
Lead Contractor: Fraunhofer FIT

Project co-funded by the European Commission
within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Public

Hydra

Document File: D4.7 Embedded service DDK prototype and report
Work Package: WP4
Task: T4.2
Document Owner: Joao Fernandes, Weishan Zhang, Klaus Marius Hansen, Mads Ingstrup

Document history:
Version Authors Date Changes Made
0.1 Mads Ingstrup and Weis-

han Zhang (UAAR)
2009-01-15 Outline

0.2 Mads Ingstrup (UAAR) 2009-01-30 added description of TCP UDP,
Bluetooth, and a bit about
SOAP

0.3 Joao Fernandes (UAAR) 2009-02-04 SOAP over UDP and SOAP
over Bluetooth

0.4 Francisco Milagro (TID)
and Marco Vettorello
(TCON)

2009-2-5 Limbo experiences

0.5 Joao Fernandes (UAAR) 2009-02-09 General overview
0.6 Weishan Zhang (UAAR) 2009-02-10 added semantic section,

changed structure
0.7 Mads Ingstrup (UAAR) 2009-02-13 Added section on integration of

limbo and ASL
0.8 Weishan Zhang (UAAR)

and Joao Fernandes
(UAAR)

2009-02-16 Executive summary, Hydra
standard services, proof
reading

0.85 Mads Ingstrup (UAAR) 2009-02-17 Proof reading with changes.
0.9 Klaus Marius Hansen

(UAAR)
2009-02-17 Section on REST

1.0 Weishan Zhang (UAAR)
and Joao Fernandes
(UAAR)

2009-02-17 Structure changes, update
of Bluetooth section, proof-
reading changes

1.1 Joao Fernandes (UAAR)
and Klaus Marius Hansen
(UAAR) and Weishan
Zhang (UAAR)

2009-02-24 Updates based on internal re-
view

Internal review history:
Reviewed by Date Comments
Pablo Antolin (TID) 2009-02-19 Approved with comments
Marco Vettorello (TCON) 2009-02-24 Approved with minor changes

Version 1.1 2 of 64 24 February, 2009

Contents

1 Introduction . 9
1.1 Components Overview . 9
2 SOAP transportation over different protocols 11
2.1 Introduction to the supported protocols . 11

2.1.1 TCP . 11
2.1.2 UDP . 12
2.1.3 Bluetooth . 12
2.1.4 SOAP . 12

2.2 SOAP over UDP . 12
2.2.1 Client stub for different protocols . 13
2.2.2 Server skeleton for different protocols 13
2.2.3 Handling variabilities of transportation protocols 17

2.3 SOAP over Bluetooth . 18
3 REpresentational State Transfer (REST) . 21
3.1 REST Overview . 21
3.2 Supporting REST in Limbo . 22

3.2.1 Describing REST Services using WSDL 22
3.2.2 Implementing REST Support in Limbo 25
3.2.3 A REST Example . 25

4 Development environment support . 30
5 Hydra-enabling a device using Limbo . 32
6 A general overview of Limbo features, Limbo generation process and its gen-

erated artifacts . 34
6.1 Updated Limbo features and compilation process 34
6.2 How to make use of the new features . 34
6.3 Overview of the generated code . 36
7 Developers evaluation . 40
7.1 TID experience . 40
7.2 TCON experience . 41
7.3 Target platform overview . 41
8 Limbo configuration validation and QoS support for web service generation

using OWL/SWRL ontologies . 42
8.1 Limbo configuration validation . 42

8.1.1 Limbo configuration and validation rules 43
8.2 Power consumption and QoS considerations of communication technologies

for web service generation . 45
8.3 SWRL rules for guiding the Limbo web service code generation 48
8.4 Prototype implementation . 48
9 Integration between Rule-based configuration management, ASL and Limbo 51
9.1 Integration of Limbo with ASL . 51
9.2 Configurations with ASL scripts . 52

3

Hydra

9.3 Integration of SWRL reasoning with ASL for the Limbo code generation . . . 53
10 Conclusion and future work . 54
A Published Papers . 56
A.1 Paper 1: Semantic Web ontologies for Ambient Intelligence: Runtime Moni-

toring of Semantic Component Constraints 56
A.2 Paper 2: Towards Self-Managed Executable Petri Nets 56
A.3 Paper 3: Semantic Web based Self-management for a Pervasive Service

Middleware . 56
A.4 Paper 4: Towards Self-managed Pervasive Middleware using OWL/SWRL

ontologies . 56
A.5 Paper 5: An OWL/SWRL based Diagnosis Approach in a Pervasive Middleware 56
A.6 Paper 6: Flexible Generation of Pervasive Web Services Using OSGi Declar-

ative Services and OWL Ontologies . 56

Version 1.1 4 of 64 24 February, 2009

List of Figures

2.1 The seven layers of the OSI reference model. 11
2.2 JSE Client Stub code using TCP connection 13
2.3 JSE Client Stub code using UDP connection 14
2.4 JME Client Stub code using TCP connection 14
2.5 JME Client Stub code using UDP connection 14
2.6 JSE Server Skeleton code using TCP connection 15
2.7 JSE Server Skeleton code using UDP connection 15
2.8 JME Server Skeleton code using TCP connection 16
2.9 JME Server Skeleton code using UDP connection 16
2.10 JSE/JME Server Skeleton code using Bluetooth connection 19
2.11 JSE/JME Client Stub code using Bluetooth connection 19
2.12 Class diagram for Protocol support in Limbo. 20
2.13 Web Service call using Bluetooth communication. 20

3.1 A UML-based ontology of WSDL concepts . 22
3.2 Class diagram of Limbo REST implementation 25
3.3 Component diagram of REST deployment . 28
3.4 Sequence diagram of Limbo control flow . 29

4.1 Activity diagram for project generation feature 30

5.1 New Hydra Device found by the HydraDAC. 33

6.1 Limbo feature diagram . 34
6.2 Limbo compilation process . 35
6.3 Limbo configuration arguments example. 36
6.4 Import camera projects into workspace. 37

8.1 SACoCo ontologies structure . 43
8.2 Limbo configuration and validation prototype architecture 49

5

List of Tables

1.1 Devices classification in Hydra . 10

6.1 Limbo configuration parameters . 36
6.2 Limbo generated classes. 38

8.1 Power consumption for Nokia N95 and Hama Bluetooth dongle 45
8.2 Power consumption for D-link DWL-G122 WIFI Dongle 46
8.3 Performance tests of TCP/UDP transportation 46

6

Executive Summary

This deliverable documents the achievements of Hydra within the area of embedded service
DDK until month 32. The following tasks have been achieved compared to the last deliver-
able D4.2b (Hansen et al., 2008c). They are listed in the order in which they are documented
in this deliverable:

• Add support in Limbo for generation of Web Service code using UDP as communica-
tion protocol.

• Add support in Limbo for generation of Web Service code using Bluetooth protocol as
communication protocol.

• Add support for project resources generation in Limbo.

• Add support for Hydra standard services generation, which will help to Hydra-enable
a device.

• Add initial support for RESTful web services.

• Evaluations of Limbo by other partners, reported as experiences.

• Enhanced support for Limbo architecture and configuration validation, and support for
component interface mismatch.

• Support for consideration of Quality of Service (QoS) for pervasive service code gen-
eration, in which communication protocols and power consumption characteristics are
considered.

• Support for enabling/disabling devices and services with architecture scripting lan-
guage, which itself is described in deliverable D4.8 (Ingstrup and Zhang, 2008).

• Six papers are published related to this task (SEKE 2008 (two papers), SASO 2008
(two papers), MRC 2008 workshop, IOT&S workshop, APSEC 2008), as in the Ap-
pendix. Limbo was also demonstrated in ICSR 2008 in the tool demonstrate session.

The following sub-tasks of T4.2 remain outstanding but should be finished by month 36,
as according to the plan in the new DOW (V7.28):

• Add full support in Limbo for generation of RESTful services.

• Add support in Limbo for generation of .NET services.

• Performance evaluations with REST-based services and SOAP web services.

7

Hydra

The role of this deliverable in Hydra The Device Development Kit (DDK) is important to
help developers to implement pervasive web services in an efficient way. This includes the
work on generating stub and skeleton code for a device, and on enabling a device for Hydra,
mainly make the device UPnP enabled and having standard Hydra operations. Enabling a
device for Hydra also includes the feature of getting an HID at runtime, which Limbo will also
help accomplish, as explored in the implementation of self-management work reported in
deliverable D4.3 (Ingstrup et al., 2008) and D4.8 (Ingstrup and Zhang, 2008). Specifically,
this deliverable serves for Hydra:

• Hydra enabling a device, any device including D0 to D4 devices. The devices without
sufficient resources for holding required features on the device itself will have a proxy.

• Facilitating the development of pervasive web services. Limbo is a generic tool to ease
the development of pervasive web services, and can be used for web services devel-
opment for any devices, as reported in our papers (Hansen et al., 2008d) (Hansen
et al., 2008a) (Hansen et al., 2008b) and former deliverables D4.2 (Hansen et al.,
2007) and D4.2b (Hansen et al., 2008c).

• Facilitate the development of other Hydra components, like the self-management com-
ponent in Hydra, as reported in D4.3 (Ingstrup et al., 2008) and D4.8 (Ingstrup and
Zhang, 2008). Limbo is used also in the Network Manager development.

• Paving the way for considering the quality of service in the development of pervasive
web service. As a starting point, we are considering different web service transporta-
tion protocols, and the power consumption of web service calls. This will enhance the
work on self-management, as well as on the QoS manager of Hydra.

• Architectural Scripting Language can be used to actuate a device or a service, as
reported in details in D4.8 (Ingstrup and Zhang, 2008).

Version 1.1 8 of 64 24 February, 2009

Hydra

1 Introduction

1.1 Components Overview

The following components are provided as a result of the work documented in this deliver-
able.

• Limbo, a web service compiler for resource constrained devices. Limbo supports de-
velopers by generating web service code, code for making the device discoverable via
UPnP protocol, Hydra generic services, state machine stubs and probes for diagnos-
tics proposes. In Hydra, devices are classified into 5 categories as in D5.4 (Sperandio
et al., 2007), namely D0 to D4 devices as shown in Table 1.1.In the two last columns,
we listed possible usage of Limbo for each of the device types and a list of devices
that Limbo has been used to generate code for them.

• Architectural Scripting Language. This is documented in D4.8 (Ingstrup and Zhang,
2008), and can be used to start and stop devices, deploy and undeploy code to them,
start and stop services and for some platforms also establish bindings among services
or runtime components.

Version 1.1 9 of 64 24 February, 2009

Hydra

Table 1.1: Devices classification in Hydra

Type Description Limbo usage Devices Limbo has been used to gener-
ate code for them

D0 Non-HED. Specific communication
protocol (BT, ZigBee). Need of a proxy
in D4

Limbo can be used in order to gen-
erate proxy code, by generating
JSE OSGi code.

– Pico TH03 thermometer service.

– Grundfos Magna 32 pump service.

– Abloy EL582 door lock service.

– Java SunSPOT thermometer ser-
vice.

– UC-322PBT A&D bloodpressure
service.

– UC-321PBT A&D weight scale ser-
vice.

– Xbee Series 2 ZB OEM thermome-
ter, accelerometer, humidity, air
pressure and ambient light services.

– smartLAB genie glugose service.

– Promedia 705IT BT bloodpressure
service.

D1 Non-HED. WS support. Use Limbo to generate code to em-
bedd in the device, this code can
be JSE standalone or JME, corre-
sponding to the available software
platform on a device.

– Nokia6630 camera, lock and ther-
mometer services.

– NokiaN80 SMS service.

– NokiaN95 8GB lock service.

– Nokia3110 lock service.

D2 HED. Specific communication protocol
(Bluetooth, Zigbee). Need of a bridge
(dedicated or in D3-D4)

If the device supports Bluetooth
communication and can host JSE
or JME, Limbo generate code using
bluetooth as communication proto-
col used by the JSE or JME server
code running on this device. And
proxy code (JSE OSGi) and blue-
tooth client code are deployed on
D3-D4 device in order to communi-
cate with the physical device.

D3 HED. Bridge hosting Powerful devices which can host
JSE standalone or JSE OSGi code
for proxying D0,D1,D2 devices.

D4 Gateways. Proxy and bridge hosting Powerful devices which can host
JSE standalone or JSE OSGi code
for proxying D0,D1,D2 devices.

Version 1.1 10 of 64 24 February, 2009

Hydra

2 SOAP transportation over different protocols

In this section we describe the protocols that are supported for use with the Hydra code
base. First, we give an overview of each protocol, and then describe the combinations of
protocols that are supported. Next, we describe in detail the design and implementation of
SOAP over UDP and Bluetooth.

2.1 Introduction to the supported protocols

The immense success of the Internet has established its protocol suite as a de facto stan-
dard for use with a range of application level protocols. Yet as the proliferation of mobile and
ubiquitous computing gains momentum, a more heterogeneous set of devices needs to be
supported, and with those comes a greater variation in what protocol features are desirable.
For instance, the Bluetooth protocol was developed with a mobile computing environment in
mind to allow discovery of devices and services.

In order to understand the relation among the protocols we consider it is useful to map
them to the open systems interconnection reference model, or OSI model. It defines seven
layers each responsible for realizing certain functions required for data communication over
a network of devices. The OSI model is shown in figure 2.1.1

Figure 2.1: The seven layers of the OSI reference model.

The TCP and UDP are part of the IP protocol suite used on the Internet. Although these
protocols do not conform strictly with the OSI model, it is nevertheless easier to understand
the services provided by them in relation to this model.

2.1.1 TCP

The Transport Control Protocol, or TCP, is a transport layer protocol. TCP is connection-
oriented which means that clients of the protocol send requests for connections to the re-

1See Cisco’s Internet working Technology Handbook for more information on the protocols described
in this chapter. Available from http://www.cisco.com/en/US/docs/internetworking/technology/handbook/Intro-to-
Internet.html

Version 1.1 11 of 64 24 February, 2009

Hydra

ceptors and use the established connection to transfer data. A connection consists of end-
points, or Internet sockets, which are stateful and once established can be used to send
arbitrary amounts of data before being closed again. The TCP protocol guarantees reliable
data transfer and that the data is received in the same order as it was sent. Further, the
protocol controls the flow of data so that the transfer rate is that of the slowest node, in order
to guarantee reliability.

2.1.2 UDP

The User Datagram Protocol, or UDP, is also a transport layer protocol, but it provides a
different quality of service from TCP. UDP is connection-less, or message oriented, and
used by sending datagrams, individually addressed packages of data. In contrast to TCP it
does not provide re-transmission when packages are lost or contain faults, and as such it is
unreliable. In addition, packages may arrive out of order. UDP is lightweight compared with
TCP and has less overhead in the transmission of data.

2.1.3 Bluetooth

The Bluetooth protocol is a short-range radio link specification. It was designed to be robust,
have low complexity, cost and power consumption. In terms of the OSI model Bluetooth
implements the physical layer and parts of the data link layer. In addition to this, a set
of specialized protocols that cannot be mapped directly to the OSI model exist. These
are for applications such as cable replacement (RFCOMM), service discovery (SDP), and
telephony (TCS-BIN) among others. A number of protocols that are not part of Bluetooth
have nevertheless been adopted and are frequently used in combination with Bluetooth.
The Point-to-Point Protocol is often used in combination with Bluetooth to provide the Data
Link layer functionality required in order to use the Internet Protocol (IP) and thus UDP or
TCP on top of Bluetooth.

2.1.4 SOAP

The Simple Object Access Protocol2, or SOAP, is used for invoking web services. It com-
monly makes use of the HTTP application layer protocol, which in turn uses TCP. It is XML
based which is beneficial because it is, at least in principle, human readable, but since XML
tends to be verbose it is also the cause of significant overhead compared with e.g. Corba.

2.2 SOAP over UDP

A study conducted on D5.9 (Sperandio et al., 2008), we performed several tests and evalu-
ated the performance of SOAP over TCP and UDP. In these tests we measured the average
Round-Trip-Time (RTT), Throughput and in UDP the Goodput. The results showed that
when both client and server are using wired connection the performance of TCP and UDP
is very similar. But in the case of having client and/or server using wireless connection, de-
spite being a non-reliable protocol, the performance of UDP is much better than TCP. This
motivate us to add the support for different communication protocols in Limbo and leave
the choice of the most adequate protocol by utilizing QoS Ontologies which will consider

2This was initially the official acronym, but appears to have been dropped in later versions of the specification.

Version 1.1 12 of 64 24 February, 2009

Hydra

try {
Socket clientSocket = new Socket(this.host, this.port);
OutputStream cos = clientSocket.getOutputStream();
cos.write(SOAPMessage.getBytes());
InputStream cis = clientSocket.getInputStream();
...
n = cis.read(buffer);
request = new String(buffer, 0, n);
...

} catch (Exception e) {
e.printStackTrace();

}

Figure 2.2: JSE Client Stub code using TCP connection

parameters such as network type, network bandwidth and network traffic and give the most
suitable protocol to Limbo as a parameter, as discussed in Chapter 8.

As a first step, we defined a new parameter in Limbo that specifies the protocol used for
communication between client and server, which at current stage is given by the developer
to Limbo.

As the next step we identified which classes have to be changed in order to support
different kinds of protocols. The classes are the client stubs and server skeletons, these
classes contain code specifying the communication used.

2.2.1 Client stub for different protocols

Figure 2.2 shows part of the code of a JSE client stub using TCP connection, and Figure
2.3 shows a JSE client stub using UDP as communication protocol, where a socket timeout
is set to a value greater than zero, this timeout was introduced because of non-reliability
of UDP protocol, so if the client does not receive the response from the server in "timeout"
seconds the call is given as lost. In case of not setting this timeout, in case of loosing a
message the client would be blocked waiting for a response from the server.

Figure 2.4 shows a JME client using TCP connection, the client makes use of Socket-
Connection class provided by CLDC1.1 (Connected Limited Device Configuration version
1.1) libraries. CLDC provides also libraries for UDP connections, as we can see in Fig-
ure 2.5, this client is making use of DatagramConnection and Datagram classes in order to
connect to the server, send the request, and finally receive the response.

2.2.2 Server skeleton for different protocols

As for the JSE server skeleton using TCP connection Figure 2.6 shows the creation of the
TCP socket, and the loop of waiting for request and return the response to the client. The
server using a UDP connection uses a DatagramSocket variable instead, and Datagram-
Packet variables that encapsulate the received and sent data, as shown in Figure 2.7.

Figure 2.8 shows us parts of a Limbo generated server skeleton JME version using a
TCP connection, defined by a ServerSocketConnection variable. For an UDP version of the
JME server, as shown in Figure 2.9 the server makes use of DatagramConnection variable
and Datagram variables in order to communicate with clients.

Version 1.1 13 of 64 24 February, 2009

Hydra

try {
InetAddress server = InetAddress.getByName(this.host);
DatagramSocket clientSocket = new DatagramSocket();
clientSocket.setSoTimeout(timeout);
...
DatagramPacket dp = new DatagramPacket(SOAPMessage.getBytes(),

SOAPMessage.getBytes().length, server, this.port);
clientSocket.send(dp);
DatagramPacket receive = new DatagramPacket(buffer, buffer.length);
clientSocket.receive(receive);
String request = new String(buffer).trim();
...

} catch (Exception e) {
e.printStackTrace();

}

Figure 2.3: JSE Client Stub code using UDP connection

try {
SocketConnection clientSocket = (SocketConnection)

Connector.open("socket://" + this.host + ":" + this.port);
OutputStream cos = clientSocket.openOutputStream();
cos.write(SOAPMessage.getBytes());
InputStream cis = clientSocket.openInputStream();
...
n = cis.read(buffer);
response = new String(buffer, 0, n);
...

} catch (Exception e) {
e.printStackTrace();

}

Figure 2.4: JME Client Stub code using TCP connection

try {
DatagramConnection clientSocket = (DatagramConnection)

Connector.open("datagram://"+this.host+":"+this.port);
Datagram dgram = clientSocket.newDatagram(SOAPMessage.getBytes(),

SOAPMessage.length());
dgram.setAddress(dgram);
clientSocket.send(dgram);
...
Datagram response = clientSocket.newDatagram(buffer, buffer.length);
clientSocket.receive(response);
request = new String(response.getData());
...

} catch (Exception e) {
e.printStackTrace();

}

Figure 2.5: JME Client Stub code using UDP connection

Version 1.1 14 of 64 24 February, 2009

Hydra

ssc = new ServerSocket(this.port) ;
...
while(!stopped){

...
sc = ssc.accept() ;
is = sc.getInputStream();
OutputStream cos = sc.getOutputStream();
...
String request = sb.toString();
System.out.println("Request Received. Attendance in progress...");
result = ((abloy_el582EndPoint)

abloy_el582EndPoint.getEndPoints().elementAt(i)).handleRequest(
p.getRequest(), SOAPAction, "servicebegin", "", cos);

if(result != null){
cos.write(result.getBytes());
cos.flush();
cos.close();
i = th03EndPoint.getEndPoints().size();

}
...

}

Figure 2.6: JSE Server Skeleton code using TCP connection

sc = new DatagramSocket(this.port);
...
while(!stopped){

...
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
sc.receive(dp);
InetAddress clientHost = dp.getAddress();
int clientPort = dp.getPort();
String request = new String(buffer).trim();
...
result = ((abloy_el582EndPoint)

abloy_el582EndPoint.getEndPoints().elementAt(i)).handleRequest(
p.getRequest(), SOAPAction, "servicebegin", "", null);

if(result != null){
DatagramPacket response = new DatagramPacket(result.getBytes(),

result.getBytes().length, dp.getAddress(), clientPort);
sc.send(response);
i = abloy_el582EndPoint.getEndPoints().size();

}
...

}

Figure 2.7: JSE Server Skeleton code using UDP connection

Version 1.1 15 of 64 24 February, 2009

Hydra

ssc = (ServerSocketConnection)Connector.open("socket://:9002");
SocketConnection sc = null;
...
while(true){

sc = (SocketConnection) ssc.acceptAndOpen();
is = sc.openInputStream();
OutputStream cos = sc.openDataOutputStream();
...
String request = sb.toString();
...
result = ((abloy_el582EndPoint)

abloy_el582EndPoint.getEndPoints().elementAt(i)).handleRequest(
p.getRequest(), SOAPAction,"servicebegin", "", cos);

if(result != null){
i = abloy_el582EndPoint.getEndPoints().size();
cos.write(result.getBytes());
cos.flush();
cos.close();

}
...

}

Figure 2.8: JME Server Skeleton code using TCP connection

ssc = (DatagramConnection)Connector.open("datagram://:9002");
...
while(true){

...
Datagram dgram = ssc.newDatagram(buffer, buffer.length);
ssc.receive(dgram);
String request = new String(dgram.getData()).trim();
...
result = ((abloy_el582EndPoint)

abloy_el582EndPoint.getEndPoints().elementAt(i)).handleRequest(
p.getRequest(), SOAPAction,"servicebegin", "", null);

if(result != null){
i = abloy_el582EndPoint.getEndPoints().size();
Datagram response = ssc.newDatagram(result.getBytes(),result.length());
response.setAddress(dgram);
ssc.send(response);

}
...

}

Figure 2.9: JME Server Skeleton code using UDP connection

Version 1.1 16 of 64 24 February, 2009

Hydra

Having identified the differences of the generated code using TCP and UDP code, the
next step was to design a generalized approach that will allow the developer to add new
protocols in an easy way.

2.2.3 Handling variabilities of transportation protocols

Due to the architecture of the generated services the classes that differ when using TCP
and UDP are the server skeletons and client stubs. This makes it easier to allow inclusion of
new protocols by the developer. It also allows the combination of skeletons using different
protocols at runtime for the same web service.

For this reason we designed a new interface named ServerProtocol for server sides,
containing the following operations:

• void createConnection(): Creates a new connection.

• String receive(): blocks until a new request arrived, parses the received message and
returns it to the server skeleton.

• void send(String response): Sends the given parameter response to the client.

• void closeConnection(): Closes the connection.

When creating a new skeleton for the web service the developer gives a new parameter
specifying the protocol that will be used. This parameter can be an instance of TCPProtocol
or an instance of UDPProtocol.

In order to add support for new protocols the developer will have to implement a class
specifically for the new protocol, and this class must implement the ServerProtocol interface.

It is possible, at runtime, to have multiple skeletons that use different communication
protocols. One example of this would be a web service with one skeleton accepting TCP
connections and another accepting UDP connections. If the developer wants to register
such a service in the NetworkManager, there is the need to create two HIDs, since the
server will have two different endpoints, although these two endpoints refer to the same
web service. The support for communication using different protocols through the Network
Manager will be a case of study from WP4 and WP5 in the future.

For client sides we added a new ClientProtocol interface, this interface contains the
following methods:

• String communicateWithServer(String SOAPMessage, String host, int port): Sends
the SOAPMessage to the given url, waits for response and returns the response to the
client stub.

Two classes were also developed for the two protocols (TCPProtocol and UDPProtocol
classes) that implement the ClientProtocol interface. After this we added a new parameter
to the client stub constructor, specifying the protocol the client will use for communicating
with the server. This parameter can be either a TCPProtocol instance or a UDPProtocol
instance. There is also the possibility for the developer to add new protocols. In order to
do so he or she has to implement a new class for the specific protocol, and this class must
implement the ClientProtocol interface.

With the scheme described here, a client of a web-service needs to know what protocol
the service is using. As for the process of choosing the correct protocol from the client side:
In case of registration from the server side in the Network Manager, the server could provide
information about the communication protocol it is using to the Network Manager. This way,

Version 1.1 17 of 64 24 February, 2009

Hydra

when the client wants to communicate with the server it looks up in the Network Manager
asking which communication protocol the server is currently accepting. This will be also
case of study from WP4 and WP5 in the future considering QoS requirements.

2.3 SOAP over Bluetooth

The study made in D5.9 (Sperandio et al., 2008) also included performance and power
consumption tests on SOAP over Bluetooth, the performance tests showed that Bluetooth
does not perform as well as TCP or UDP. But, as expected, the power consumption tests
Bluetooth showed to be the solution that consumes less power when comparing with wire-
less solution. Since power consumption is one of the dominating constraints for resource
constrained devices we decided to add support in Limbo for services using bluetooth as
communication.

For JME services, the libraries jsr82 (Java Specification Requests 82) and CLDC1.1 pro-
vide classes for bluetooth communication. As for JSE services we used Bluecove library,
which interfaces with Mac OS X, WIDCOMM, BlueSoleil and Microsoft Bluetooth stack in
Windows XP SP2 or Windows Vista and WIDCOMM and Microsoft Bluetooth stack on Win-
dows Mobile.

Figure 2.11 shows us parts of a client using Bluetooth as communication protocol, Fig-
ure 2.10 shows us parts of code of a server skeleton using Bluetooth as communication,
the code is the same for JSE or JME versions, since the needed classes have the same
naming, but provided by different libraries.

During the development of web services over bluetooth we experienced some failures,
when in the server side we closed the connection and in the client side the response was
still not received. In order to overcome this failure we implemented a mechanism of ac-
knowledgments, as shown in Figure 2.13. The client sends the SOAP request and awaits
the response from the server, after receiving the response from the server the client sends
an acknowledgment to the server, which the server also acknowledges to the client again.
After the exchange of acknowledges both client and server can close the connection.

For adding bluetooth support in Limbo we followed the same design as for the support
of UDP and TCP protocols, for that, in server sides we implemented a new class named
BTProtocol, which also implements the ServerProtocol interface. As for client side the same
procedure was done by implementing BTProtocol class that implements the ClientProtocol
interface. But in the case of Bluetooth clients we will always need to run the discovery
process in order to be able to retrieve the server url and be able to communicate with it. To
do that we generate an extra class, a specific bluetooth client class that runs the discovery
process and passes the url to the service to the client stub. Figure 2.12 shows us a class
diagram for the current supported protocols for both client and server sides.

Version 1.1 18 of 64 24 February, 2009

Hydra

LocalDevice device = LocalDevice.getLocalDevice();
device.setDiscoverable(DiscoveryAgent.GIAC);
String url = "btspp://localhost:"+UUID+";name=abloy_el582";
StreamConnectionNotifier notifier = (StreamConnectionNotifier)

Connector.open(url);
...
while(!stopped){

...
StreamConnection sc = (StreamConnection) notifier.acceptAndOpen();
is = sc.openInputStream();
OutputStream cos = sc.openDataOutputStream();
result = ((abloy_el582EndPoint)

abloy_el582EndPoint.getEndPoints().elementAt(i)).handleRequest(
p.getRequest(), SOAPAction, null, null, cos);

if(result != null){
cos.write((result+"/$").getBytes());
cos.flush();
i = abloy_el582EndPoint.getEndPoints().size();

}
...

Figure 2.10: JSE/JME Server Skeleton code using Bluetooth connection

StreamConnection stream = (StreamConnection) Connector.open(this.url);
OutputStream cos = stream.openOutputStream();
cos.write(SOAPMessage.getBytes());
cos.flush();
InputStream cis = null;
try {

cis = stream.openInputStream();
}catch(Exception e) {
...
}
do {

bytesRead = cis.read(buffer);
if (bytesRead > 0) {

response = response.concat(new String(buffer, 0, bytesRead));
}

} while (!response.endsWith("/$"));
...

Figure 2.11: JSE/JME Client Stub code using Bluetooth connection

Version 1.1 19 of 64 24 February, 2009

Hydra

Figure 2.12: Class diagram for Protocol support in Limbo.

Figure 2.13: Web Service call using Bluetooth communication.

Version 1.1 20 of 64 24 February, 2009

Hydra

3 REpresentational State Transfer (REST)

3.1 REST Overview

REpresentational State Transfer (REST) is an architectural style on which central web ar-
chitectures such as HTTP are built (Fielding, 2000). It is also increasingly used on an ap-
plication level for communication with services on top of HTTP1, the rationale being that by
following the architectural style of the Web, qualities such as scalability and interoperability
are to an extent supported.

As an architectural style, REST may be described through the constraints it puts on an
architecture (Fielding, 2000, chap 5):

• Client/Server. REST is client-server-based in that separates user interface concerns
(at the client) from storage concerns (at the server)

• Stateless. A request from the client to the server must contain all data for the server
to understand the request and should not use state information on the server

• Caching. Servers may mark data as cacheable and thus allow clients to reuse re-
sponses

• Uniform Interfaces. Component interaction is through uniform interfaces for identifying,
manipulating, describing, and navigating resources

• Layering. Systems should be allowed to be composed of layers in which components
are not visible “through” layers

• Code-on-demand. Client functionality can be extended by downloading and executing
code. This is an optional constraint on the REST style

The architectural elements of REST are data elements, connectors, and components.
In contrast to distributed object styles (of which SOAP is an example), the key abstraction
in REST are data elements in the form of resources (e.g., a document) of which current or
intended representations are transferred. Resources are accessed through uniform inter-
faces of connectors and a key point is that hypermedia is used to drive the application state,
i.e., links in representations inform clients (and servers) of what current and possible states
are.

The REST architectural style (in particular as realized on top of HTTP) is of interest
in Hydra in that it leverages existing Web features (such as caching or exception handling
through error codes), imposes only small communication overhead (on top of, e.g., HTTP),
and forces an application structuring in terms of state-chaning resources. The first two
characteristics potentially makes implementations more lightweight (and well-integrated with
existing web infrastructure) and the last characteristic is arguably a good match with many
embedded systems.

1A Google search on “rest “web services”” 2009-02-17, e.g., gave 4,1 million hits. A prominent commercial
example of RESTful services are Amazon’s web services that both exist in SOAP and REST variants

Version 1.1 21 of 64 24 February, 2009

Hydra

3.2 Supporting REST in Limbo

3.2.1 Describing REST Services using WSDL

Limbo relies on a service description (currently in the form of WSDL files) to generate web
service support. As REST is an architectural style, it is quite abstract and there is no stan-
dard (or default) mapping to implementations. In our context we are concerned with HTTP
and thus map REST to that protocol. We have chosen also to describe REST services
using WSDL since this allows for a uniform description format for services that Limbo may
generate code for.

The WSDL 1.1 specification is available at http://www.w3.org/TR/wsdl. A WSDL
document is an XML document that describes how a web service may be accessed.

Figure 3.1 illustrates the concepts of WSDL as an ontology. The elements that are con-

<<concrete>>

Definition

<<concrete>>

Service

*

<<concrete>>

Binding

*

<<abstract>>

PortType

Operation

<<concrete>>

Port

binding

Input Output

*

*

<<abstract>>

Message

*

<<abstract>>

Types

0..1

*

0..1 0..1

message
Fault

*

message

message

<<abstract>>

Part

*

Figure 3.1: A UML-based ontology of WSDL concepts

crete in the sense that they are bound to specific network protocols and message formats
are marked as so with a stereotype; conversely, abstract elements are also marked with a
stereotype. Operation, Input, Output, and Fault may be both abstract and concrete depend-
ing on whether they are part of a PortType or Binding.

The WSDL specification gives a grammar for WSDL documents which is shown below
(<wsdl:documentation .../> productions removed):

<wsdl:definitions name="nmtoken"? targetNamespace="uri"?>

Version 1.1 22 of 64 24 February, 2009

http://www.w3.org/TR/wsdl

Hydra

<import namespace="uri" location="uri"/>*
<wsdl:types> ?

<xsd:schema />*
<-- extensibility element --> *

</wsdl:types>
<wsdl:message name="nmtoken"> *

<part name="nmtoken" element="qname"? type="qname"?/> *
</wsdl:message>
<wsdl:portType name="nmtoken">*

<wsdl:operation name="nmtoken">*
<wsdl:input name="nmtoken"? message="qname"/>?
<wsdl:output name="nmtoken"? message="qname"/>?
<wsdl:fault name="nmtoken" message="qname"/> *

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="nmtoken" type="qname">*

<-- extensibility element --> *
<wsdl:operation name="nmtoken">*

<-- extensibility element --> *
<wsdl:input> ?

<-- extensibility element -->
</wsdl:input>
<wsdl:output> ?

<-- extensibility element --> *
</wsdl:output>
<wsdl:fault name="nmtoken"> *

<-- extensibility element --> *
</wsdl:fault>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="nmtoken"> *

<wsdl:port name="nmtoken" binding="qname"> *
<-- extensibility element -->

</wsdl:port>
<-- extensibility element -->

</wsdl:service>
<-- extensibility element --> *

</wsdl:definitions>

The extensibility elements of the grammar are intended for enabling, e.g., the specifica-
tion of concrete bindings. The WSDL specification specifies three bindings (SOAP, HTTP,
and MIME) but mandates the use of neither. This section discusses how we will support
REST in Limbo. There are at least the following issues to take care of:

• REST is an architectural style and not a standard or a specification. This means that
we need to have a specific interpretation of REST

• WSDL operations are somewhat at odds with REST URIs in that the latter are identi-
fying resources rather than operations on resources

• REST input corresponds to one of the HTTP request forms (e.g., GET, PUT, POST, or
OPTIONS), but WSDL describes the use of general XML which may be a problem as
input to operations

Version 1.1 23 of 64 24 February, 2009

Hydra

• The HTTP binding in the WSDL specification is not the solution although it comes
close: it specifies that a binding uses a specific verb for all operations

Thus we define a new binding, REST, that is derived from the HTTP binding, having the
following schema:

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
xmlns:rest="http://schemas.xmlsoap.org/wsdl/rest/"
targetNamespace="http://schemas.xmlsoap.org/wsdl/rest/">

<element name="address" type="rest:addressType">
<complexType/>

</element>
<complexType name="addressType">

<attribute name="location" type="uriReference" use="required"/>
</complexType>
<element name="binding"/>
<element name="operation" type="rest:operationType"/>
<complexType name="operationType">

<attribute name="method" type="NMTOKEN" use="required"/>
<attribute name="location" type="uriReference" use="required"/>

</complexType>
</schema>

This gives the following structure of REST-bound WSDL definitions:
<definitions >

<binding >
<rest:binding/>
<operation >

<rest:operation location="uri" method="nmtoken"/>
</operation>

</binding>
<service ...>

<port >
<rest:address location="uri"/>

</port>
</service>

</definitions>

The extension elements have the following semantics:

rest:address. The location attribute specifies a base URI for the port. This base URI is
combined with the URI for individual operations to provide a URI for an operation

rest:operation. The location attribute must be a relative URI that specifies the location of
the resource/representation that the operation addresses. Depending on whether the
verb attribute is GET or PUT/POST, the input operations will be either encoded in the
request URI or be part of the request entity body

It should be noted that although a service is described using the REST binding they
are not necessarily RESTful (just as SOAP service description in WSDL do not necessarily
follow good software engineering practices). In fact simple RPC XML applications can easily
be described using the binding. Rather, it is up to the developer to design the interfaces and
XML datatypes so that the instances of the datatypes are representations of resources,
HTTP verbs are used in a reasonable way, and interfaces allows for a hypertext-based
interaction with resources.

Version 1.1 24 of 64 24 February, 2009

Hydra

3.2.2 Implementing REST Support in Limbo

Our current implementation has been directed towards supporting REST services on a spe-
cific platform (in this case the LEGO NXT platform2) meaning that the code generated is
specific to this embedded platform, but the design of the generation can be reused.

Figure 3.2 shows a module view of the current Limbo REST implementation. Gray
classes are interfaces from the base Limbo and white classes are the main extension
classes. The standard implementations of the Limbo interfaces are not shown for clarity.
Next, Figure 3.3 shows how the REST implementation is deployed. All dependencies shown

<<interface>>
Frontend

RESTFrontend

<<interface>>
Repository

<<interface>>
Generator

RESTBackend

<<interface>>
Backend

*

Figure 3.2: Class diagram of Limbo REST implementation

are made through Declarative Services declarations. Further, Figure 3.4 shows a dynamic
view of how the REST Frontend and REST Backend are invoked by Limbo. In the current
implementation, the REST Frontend is responsible for checking whether REST is applicable
in the compilation situation (that it is indeed a WSDL file with a REST binding that is being
processed) and for setting parameters. To do this, the Frontend uses the Repository (which
it receives a reference to through OSGi’s Declarative Services). The REST Backend, cor-
respondingly, uses the REST Frontends checks and generates a REST-based web service
skeleton (currently only for the Lego NXT platform).

3.2.3 A REST Example

The following shows a very simple example of a description of a REST service:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://nxtservice.hydra.eu.com"

name="NXTService" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:impl="http://nxtservice.hydra.eu.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:rest="http://hydramiddleware.eu/rest/">

2http://mindstorms.lego.com/

Version 1.1 25 of 64 24 February, 2009

http://mindstorms.lego.com/

Hydra

<types>
<xsd:schema>

<xsd:import namespace="http://nxtservice.hydra.eu.com" schemaLocation="NXTService_schema.xsd"/>
</xsd:schema>

</types>

<message name="lightsensorRequest"/>
<message name="lightsensorResponse">
<part name="result" type="impl:lightsensor"/>

</message>

<message name="touchsensorRequest"/>
<message name="touchsensorResponse">
<part name="result" type="impl:touchsensor"/>

</message>

<portType name="NXTServicePort">
<operation name="lightsensor">
<input message="impl:lightsensorRequest" name="lightsensorRequest"/>
<output message="impl:lightsensorResponse" name="lightsensorResponse"/>

</operation>
<operation name="touchsensor">
<input message="impl:touchsensorRequest" name="touchsensorRequest"/>
<output message="impl:touchsensorResponse" name="touchsensorResponse"/>

</operation>
</portType>

<binding name="NXTServiceBinding" type="impl:NXTServicePort">
<operation name="lightsensor">
<rest:operation location="/sensor/light" method="GET"/>
<input name="lightsensorRequest"/>
<output name="lightsensorResponse"/>

</operation>
<operation name="touchsensor">
<rest:operation location="/sensor/touch" method="GET"/>
<input name="touchsensorRequest"/>
<output name="touchsensorResponse"/>

</operation>
</binding>

<service name="NXTService">
<port name="NXTServicePort" binding="impl:NXTServiceBinding"/>
<rest:address location="/"/>

</service>
</definitions>

The referenced XML schema is shown next:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" targetNamespace="http://nxtservice.hydra.eu.com"

xmlns:impl="http://nxtservice.hydra.eu.com"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="lightsensor">
<xs:sequence>

<xs:element name="port" type="xs:integer" minOccurs="1"/>

Version 1.1 26 of 64 24 February, 2009

Hydra

<xs:element name="value" type="xs:integer" minOccurs="1"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="touchsensor">

<xs:sequence>
<xs:element name="port" type="xs:integer" minOccurs="1"/>
<xs:element name="value" type="xs:boolean" minOccurs="1"/>

</xs:sequence>
</xs:complexType>
</xs:schema>

To fully utilize the nature of REST, this description could, e.g., be extended with methods
for listing the sensors of the robot. The XML listing would then contain URIs of the individual
sensors.

Version 1.1 27 of 64 24 February, 2009

Hydra

rest_frontend rest_backend

limbo

limbo_
 configuration

repository

Figure 3.3: Component diagram of REST deployment

Version 1.1 28 of 64 24 February, 2009

Hydra

loop

loop

:Generator

generate()

:Frontend

process()

[for each frontend]

:Backend

process()

[for each frontend]

Figure 3.4: Sequence diagram of Limbo control flow

Version 1.1 29 of 64 24 February, 2009

Hydra

4 Development environment support

From the WP4 lessons learned, we knew from developer’s feedback that the process of
using Limbo-generated code to create their own web services was time consuming because
Limbo only generated the needed classes, not the project structure needed to utilize them.
The developers would have to create projects, source packages, add the needed libraries,
etc. This process would take time for the developers before they could have their web
service up and running.

In order to save some time, we decided to add support in Limbo for project resources
generation. This includes generation of normal JSE projects, plug-in projects and MIDlet
projects (JME version).

This feature was added in Limbo plug-in, since we will always want the generation of
project resources. The activity diagram in Figure 4.1 shows us the project generation feature
behavior.

Figure 4.1: Activity diagram for project generation feature

For client sides, if the language is J2SE and for server sides if the language is JSE and
the server type is “standalone” we generate the following resources:

Version 1.1 30 of 64 24 February, 2009

Hydra

• .classpath file: Stores the Java Build Path, i.e., the classpath used at compile-time and
the classpath at runtime.

• .project file: Specifies general project properties.

As for JME projects the following resources are required for both server and client projects:

• .classpath file: Stores the Java Build Path, i.e., the classpath used at compile-time and
the classpath at runtime.

• .project file: Specifies general project properties.

• .mtj file: Specifies the MIDlet project meta data, this information includes jad file name
and emulated device information.

• .settings/org.eclipse.core.jdt.prefs file: This file specifies which JVM to use at compile
time.

For server sides, in case of JSE language and server type OSGi, we need to generate
resources for a plug-in project, these resources are:

• .classpath file: Stores the Java Build Path, i.e., the classpath used at compile-time and
the classpath at runtime.

• .project file: Specifies general project properties.

• MANIFEST.MF file: Specifies plug-in information, this information includes dependen-
cies to other plug-ins, plug-in classpath, plug-in activator, imported and exported pack-
ages.

• build.properties file: Specifies project build properties.

In addition to these resources information generation, Limbo adds all the needed libraries
for project compilation and runtime. With this feature the developer will have in general to
import existing projects into the workspace browsing the project directory and the project is
added to the workspace.

Version 1.1 31 of 64 24 February, 2009

Hydra

5 Hydra-enabling a device using Limbo

In this chapter we will show how Limbo can automatically hydra-enable a device. There are
two general requirements for a device to be hydra-enabled, they are:

• Device discoverable by UPnP, Bluetooth, etc. protocol, providing a set hydra-standard
services as listed below, these services are not web services yet.

The Hydra DAC searches for devices in the network discoverable by UPnP protocol
among other discovery protocols. In order to be hydra-enabled the device has to
provide an hydra-standard service. These services contain general operations for a
device, as follows:

– String CreateWS(): Creates the web service for the device, returning the endpoint
of the created web service.

– String GetDACEndpoint(): Returns the endpoint of the Hydra DAC.

– String GetDiscoveryInfo(): Returns general discovery information of the device.

– String GetErrorMessage(): Returns an error message.

– boolean GetHasError(): Returns true if the device is in an error state false other-
wise.

– String GetHydraID(): Returns the HydraID of the device.

– String GetHydraWSEnpoint(): Returns the endpoint of the Hydra Standard web
service.

– String GetProperty(String Property): Returns the value of the given property.

– String GetStatus(): Returns the status of the device, represented by a String
value.

– String GetWSDL(): Returns the content of the device WSDL file as String value.

– String GetWSEndpoint(): Returns the device web service endpoint.

– void SetDACEndpoint(String DACEndpoint): Sets the DACEndpoint to the given
value.

– void SetHydraID(String HydraID): Sets the device HydraID to the given value.

– void SetProperty(String Property, String Value): Sets the given property to the
given value.

– void SetStatus(String Status): Sets the device status to the given value.

– void Stop(): Stops the device.

– void StopHydraWS(): Stops the Hydra Standard web service.

– void StopWS(): Stops the device web service.

• Provide Hydra Standard web services for the above services set. The device has
also to offer an Hydra Standard web service that provides a subset of this operations
(currently not including Stop(), StopHydraWS(), StopWS() and CreateWS()).

In order to be able to support this functionalities in Limbo generated code we added
a new parameter to the Limbo configuration specifying if we want to generate an hydra-
standard service, as shown in Table 6.1 and designed a new Backend plug-in, the HydraS-
tandard plug-in.

Version 1.1 32 of 64 24 February, 2009

Hydra

This Backend plug-in when called, checks the hydra standard parameter from the Limbo
configuration and if it is set to "true", it calls the method generateCode of Limbo, giving as
a parameter a WSDL file that implements all the operations needed by the hydra-standard
service.

These operations need also to be available by UPnP protocol, in order to achieve this we
extended the UPnP backend plug-in, by checking also this hydra standard parameter from
the Limbo configuration, if set to "true" the UPnP backend generates also all the necessary
resources to make this hydra standard service available via UPnP protocol.

At runtime the HydraDAC will find the device by UPnP protocol, and since it provides an
hydra-standard service it resolves the device as a hydra device. As shown in Figure 5.1.

Figure 5.1: New Hydra Device found by the HydraDAC.

Version 1.1 33 of 64 24 February, 2009

Hydra

6 A general overview of Limbo features, Limbo
generation process and its generated artifacts

This chapter will give a general high level overview of the updated Limbo features and its
compilation process compared to the work reported in deliverables D4.2 (Hansen et al.,
2007) and D4.2b (Hansen et al., 2008c). Also an overview of how to use these new features
and the generated artifacts will be discussed.

6.1 Updated Limbo features and compilation process

Taking consideration of the work talked in the former sections, the updated Limbo feature
and compilation process is shown in Figure 6.1 and Figure 6.2, in which the consideration
of different SOAP transportation protocols are considered as variants in the feature diagram
and also reflect in the compilation process.

Limbo

FrontEnd

WSDL

Frontend

Backend

SOAP

FrontEnd

Parser

Generator

JavaSEParser

Backend

REST

Frontend

Repository

DotNetParser

Backend

Mandatory

Optional

Alternative

OR

Legend

JavaMEParser

Backend

LeJOSParser

Backend

ServerSide

Generator

ClientSide

Generator

Transport

Generator

Controller ServerSkeleton

StateMachine

Generator

JavaSE DotNetJavaME OSGi ...

SOAP/

UDP

SOAP/

TCP

SOAP/

Bluetooth

Figure 6.1: Limbo feature diagram

6.2 How to make use of the new features

Now we will briefly discuss on how to use Limbo with these new features. Table 6.1 shows
us the configuration parameters given by the developer to Limbo for code generation.

We will explain now, in general steps, how to use Limbo using Eclipse IDE. In or-
der to run Limbo you will need the project limbo_osgi that can be retrieved from svn:
https://hydra.fit.fraunhofer.de/svn/trunk/sdk/limbo_osgi. Limbo is a set of plug-ins, e.g.,
limbo.jar, repository.jar, upnp.jar, statemachine.jar. This architecture allows the developer
easily to add/remove features from the generated code. These bundles can be found in
the lib folder of the limbo_osgi project and can be added/removed to/from that folder if the
developer does/does not want to generate extra feature code.

First of all the developer needs to specify a WSDL file for the web service he wants
Limbo to generate code to. After writing the WSDL file the developer will have to run the
OSGiLimboManager class by right-clicking in the class and choosing Run As...->Open Run

Version 1.1 34 of 64 24 February, 2009

Hydra

Provide WSDL

service description

Provide Limbo

configuration

Generate

based on

configuration

Generate based

on ontology

[Ontology available]
[Ontology not available]

Create proxy

stubs

and skeletons

Create embedded

stubs and

skeletons

[Resources

available

on device]

[Resources not

available

on device]

Generate

State

machine

[State

machine

needed]

Generate

UPnP for

UPnP devices

Generate

UPnP

for devices

QoS

Throughput/fast response

reliability

Power consumption

Generate

SOAP/UDP

Generate

SOAP/TCP

Generate

SOAP/Bluetooth

Figure 6.2: Limbo compilation process

Dialog. In the Run Dialog choose a new Java Application configuration and add in the
program arguments tab the arguments described in Table 6.1. One example of it is shown
in Figure 6.3 and select Run. A new instance of the OSGi framework will be launched
and Limbo will generate code for the specified web service. After the code generation the
developer can check that a new folder named “generated” was created in the limbo_osgi
project by right-clicking in the project and selecting Refresh. One or two folders are inside
this generated directory, e.g., xxServer for server code and xxClient for client code.

As next step the developer needs to import the generated projects into the workspace to
he/she can start working. To do this go to menu File->Import..., select Existing Projects into
Workspace and browse the generated folder of the limbo_osgi project as shown in Figure 6.4
this will import the generated projects into the workspace to the developer can start working
on it.

Version 1.1 35 of 64 24 February, 2009

Hydra

Parameter Explanation Possible Values
-s Language variant in which the gener-

ated code will be written.
"jse" or "jme"

-o Target system. Limbo can gener-
ate standalone servers or osgi based
servers.

"standalone" or "osgi"

-t Generated components. "client", "service" or "all"
-h Specifies if we want to generate as

hydra standard web service.
"true" or "false"

-c The protocol used for communication
between server and client.

"TCP", "UDP" or "BT"

wsdl Path for the wsdl description of the
web service.

p.e. "test/com/eu/hydra/limbo/mobilecamera.wsdl"

Table 6.1: Limbo configuration parameters

Figure 6.3: Limbo configuration arguments example.

6.3 Overview of the generated code

Table 6.2 summarizes the generated classes for the currently supported platforms. As we
can see from the table, the client classes are the same, and differences are the server side
for different platform.

We will briefly describe each of the generated classes by Limbo:

• JSE standalone/OSGi and JME client

– Package com.eu.hydra.limbo.client:

Version 1.1 36 of 64 24 February, 2009

Hydra

Figure 6.4: Import camera projects into workspace.

∗ StringTokenizer.java: Utility class.
∗ LimboClient.java: Defines the main method of the client.
∗ LimboClientParser.java: Class used for parsing of SOAP messages.
∗ LimboClientPort.java: Interface defining the operations the client can call.
∗ LimboClientPortImpl.java: Implementation of the operations call.
∗ ClientProtocol.java: Interface defining operations of a communication proto-

col.
∗ TCPProtocol.java: Defines the communication between client and server us-

ing TCP protocol.
∗ UDPProtocol.java: Defines the communication between client and server us-

ing UDP protocol.
∗ BTProtocol.java: Defines the communication between client and server using

bluetooth.

• JSE standalone/OSGi and JME server

– Package com.eu.hydra.limbo.handler:

∗ Handler.java: Abstract class for handler.
∗ Handlers.java: Class managing the queue of handlers of the service.
∗ HandlerService.java: Interface defining the handler method.

Version 1.1 37 of 64 24 February, 2009

Hydra

JSE OSGi JSE Standalone JME

client ClientHeaderParser.java ClientHeaderParser.java ClientHeaderParser.java
StringTokenizer.java StringTokenizer.java StringTokenizer.java

LimboClient.java LimboClient.java LimboClient.java
LimboClientParser.java LimboClientParser.java LimboClientParser.java

LimboClientPort.java LimboClientPort.java LimboClientPort.java
LimboClientPortImpl.java LimboClientPortImpl.java LimboClientPortImpl.java

ClientProtocol.java ClientProtocol.java ClientProtocol.java
TCPProtocol.java TCPProtocol.java TCPProtocol.java
UDPProtocol.java UDPProtocol.java UDPProtocol.java

BTProtocol.java BTProtocol.java BTProtocol.java
server Handler.java Handler.java Handler.java

Handlers.java Handlers.java Handlers.java
HandlerService.java HandlerService.java HandlerService.java

LogHandler.java LogHandler.java LogHandler.java
SOAPHandler.java SOAPHandler.java SOAPHandler.java

StringTokenizer.java HeaderParser.java HeaderParser.java
Activator.java StringTokenizer.java StringTokenizer.java
OpsImpl.java EndPoint.java EndPoint.java

Parser.java LimboServer.java LimboServer.java
Servlet.java OpsImpl.java OpsImpl.java

ServerProtocol.java Parser.java Parser.java
TCPProtocol.java Service.java Service.java
UDPProtocol.java ServerProtocol.java ServerProtocol.java

BTProtocol.java TCPProtocol.java TCPProtocol.java
UDPProtocol.java UDPProtocol.java

BTProtocol.java BTProtocol.java

Table 6.2: Limbo generated classes.

∗ LogHandler.java: Handler used for logging features.
∗ SOAPHandler.java: Handler responsible for handling SOAP messages.

– Package com.eu.hydra.limbo:

∗ StringTokenizer.java: Utility class.
∗ Parser.java: Class used for parsing SOAP messages.
∗ OpsImpl.java: Class defining the implementation of the operations provided

by the web service.
∗ ServerProtocol.java: Interface defining operations of a communication proto-

col.
∗ TCPProtocol.java: Defines the interaction of the server with the client using

TCP protocol.
∗ UDPProtocol.java: Defines the interaction of the server with the client using

UDP protocol.
∗ BTProtocol.java: Defines the interaction of the server with the client using

Bluetooth protocol.

• JSE standalone and JME server

– Package com.eu.hydra.limbo:

∗ HeaderParser.java: Parser for HTTP messages.
∗ EndPoint.java: Abstract class that defines the endpoints (i.e. services) that

are provided by the server.
∗ LimboServer.java: Limbo server main class.
∗ Service.java: Extends Endpoint class, defines a service provided by the

server.

Version 1.1 38 of 64 24 February, 2009

Hydra

• JSE OSGi server

– Package com.eu.hydra.limbo

∗ Activator.java: Activator class for the OSGi Server.
∗ Servlet.java: The server class in this case a Servlet.

Based on the generated code, the device developer only needs to bind the device services to
the actual device by adding related code in class OpsImpl.java or LimboClientPortImpl.java.

Version 1.1 39 of 64 24 February, 2009

Hydra

7 Developers evaluation

In this chapter we will present developers evaluation of Limbo. The developers involved
were partners from TID and T-CON to whom it was asked to answer a small questionnaire
on their experience with Limbo.

7.1 TID experience

We have used Limbo to generate code for several devices managers with the following
results:

• Weight scale (UC-321PBT A&D) Bluetooth device proxy code

The proxy WS code and the UPnP device were generated using Limbo compiler. The
generation of Limbo code was easy, but we faced a problem because the WS code
generated by Limbo was not compatible with a PHP client, so several corrections
had to be performed in the SOAP message parsing in order to successfully invoke
the services from a PHP client. As there were only two methods for the service, the
corrections applied to the code did not take more than one hour. However, we would
prefer that Limbo would deal with this compatibility issues in the future. The resulting
code is quite efficient regarding resource consumption (processor, memory) compared
to Axis generated code (more than half of memory usage).

• Blood pressure (UC-322PBT A&D) Bluetooth device proxy code

The proxy WS code and the UPnP device were generated using Limbo compiler. The
generation of Limbo code was easy, but we faced a problem because the WS code
generated by Limbo was not compatible with a PHP client, so several corrections
had to be performed in the SOAP message parsing in order to successfully invoke
the services from a PHP client. As there were only two methods for the service, the
corrections applied to the code did not take more than one hour. However, we would
prefer that Limbo would deal with this compatibility issues in the future. The resulting
code is quite efficient regarding resource consumption (processor, memory) compared
to Axis generated code (more than half of memory usage).

• Network Manager J2SE

The code (client and server side) for the Network Manager was generated using Limbo
compiler. The code generation was easy, but we faced the same compatibility issues
as before, with Axis client code and .Net client code. Several corrections had to be
performed in the SOAP message parsing in order to successfully invoke the Network
Manager Service from .Net and Axis generated code. The corrections applied to the
code took three hours because there were more than 15 methods to modify. The
resulting code is quite efficient regarding resource consumption (processor, memory)
compared to Axis generated code (more than half of memory usage).

• Network Manager J2ME

The server code for Network Manager for J2ME version was generated using Limbo
compiler. The code generation was easy, but we faced several problems with the
generated code:

Version 1.1 40 of 64 24 February, 2009

Hydra

– J2ME virtual machine (Esmertec Jbed) used was not able to open server socket
connections, so another virtual machine had to be installed (IBM MIDP Java Em-
ulator 2.3)

– The IBM Jbed does not support the FileConnection because when the LogHan-
dler is created, an exception is thrown: Scheme not found file The problem was
solved the problem by removing this handler in the NMApplicationHandlers con-
structor.

– The NMAppParser class experiments the usual parsing problems: it is not generic
enough. In order to be able to invoke the service with axis generated client code,
it was modified in order to get the right result. The corrections applied to the code
due to the problems took eight hours. The generated code seems to behave
perfectly on J2ME. It cannot be compared with Axis, because there is not a J2ME
version of it.

7.2 TCON experience

Xbee Series 2 (ZB OEM) The usage of Limbo is very easy, we just need to specify a set of
arguments (e.g. server, client, language, wsdl, etc) and have our web service generated.
Some time was spent in order to be able to specify the wsdl for our web service. With Axis
the creation of a web service from a Java interface is fast and creates automatically my wsdl
file, but we do not have project generation and support for making the device available via
UPnP protocol, which Limbo is able to do. We never tested resource consumption when
comparing it with an Axis generated service.

7.3 Target platform overview

As shown in Table 1.1 we have been using Limbo tool to generate web services code for
a number of devices, and also explored by using it for the development of other Hydra
components.

For D1 devices we have been deploying mostly, J2ME code in several Nokia mobile
phones. One example is the Nokia 6630 where we have been deploying several services,
this phone has 10MB shared memory. One of the services we deployed in this phone was
a camera service, which when called takes a picture using its camera and sends the image
data to the client. We deployed client code in a Nokia 3110, with 9MB shared memory, and
invoked the camera service, when receiving the data image from the server the client builds
the image and shows the picture taken from the server. Other service example is a SMS
service deployed in a Nokia N80 phone, this service when invoked sends a SMS message
to the given number by the client. Performance and resource measurements were made
with this service (reference D4.2 (Hansen et al., 2007), Limbo evaluation).

As for D0 devices developers have been generating proxy services for different devices,
in Building Automation and Health care scenarios, many of these services were presented
in previous reviews.

Currently TID has been working on a J2SE version and J2ME version of the Network
Manager and the obtained results in terms of performance and memory consumption show
that Limbo is very efficient when comparing it with AXIS generated code.

Version 1.1 41 of 64 24 February, 2009

Hydra

8 Limbo configuration validation and QoS
support for web service generation using
OWL/SWRL ontologies

OWL/SWRL ontologies are used in Limbo to formulate the configuration of Limbo, i.e, feature
combinations as discussed in deliverables D4.2 (Hansen et al., 2007) and D4.2b (Hansen
et al., 2008c). We will improve these former work based on our new findings and will discuss
it in Section 8.1. Also to take into consideration of quality of service requirements and differ-
ent communication technologies employed by embedded devices, we will extend the former
work by guiding the limbo generation process using SWRL rules based on the ontologies
(QoS ontologies, Device ontologies) as discussed in deliverable D4.8 (Ingstrup and Zhang,
2008).

8.1 Limbo configuration validation

In the former deliverable D4.2b (Hansen et al., 2008c), we have pointed out the problems
with the OSGi R4 definition of declarative services, which is using key-value pair to specify
component properties:

• Global constraints are not supported.

• Contextual constraints are not supported.

• Functional constraints are not supported.

We also find a problem of OSGi DS implementation as in Eclipse Equinox1: component
interface mismatches are not sufficiently handled. For example, when there are multiple
components with the same name, Equinox just picks the one with lowest bundle (a syn-
onym for component in OSGi) identification to execute, and does not care about the exact
semantics of the components and their relationships.

Therefore we proposed to enhance the semantics of OSGi declarative services, by
adding semantics to the component using OWL2, in which we developed the OSGi com-
ponent ontology and a number of configuration rules are developed (Hansen et al., 2008c).
The processing of these rules are handled using the developed configuration bundles dis-
cussed in Section 8.4. To identify possible interface mismatches, we need also associate
the component implementation details with each other in a specific configuration, to validate
whether components are correctly referenced with each other. We need also make sure
that the Repository architecture style is stilled followed when Limbo components are recon-
figured. In this context, and potentials for validating Hydra architecture, and architecture of
applications developed using Hydra middleware, a number of OWL ontologies for software
architecture assets (including semantic architecture style, semantic OSGi components, se-
mantic connectors) are developed, as part of self-management ontologies, as detailed in
deliverable D4.8 (Ingstrup and Zhang, 2008). In this deliverable, we call these semantic
software architecture assets SACoCo (Semantic architecture, component, and connectors)
ontologies.

1http://www.eclipse.org/equinox/
2OWL Web Ontology Language http://www.w3.org/TR/owl-features/

Version 1.1 42 of 64 24 February, 2009

Hydra

SACoCo has a number of ontologies, including one for atomic connectors (Atomic-
Connetor ontology) and another one for composite connectors (CompositeConnector on-
tology), an ontology for high level component concepts (ServiceComponent ontology) which
imports separate ontologies for specific component models (e.g. OSGi), an ontology for ar-
chitectural styles (ArchStyle ontology), and additionally we have another ontology to specify
architecture constraint rules using SWRL (ArchRule ontology). The relationships between
these ontologies in SACoCo are shown in Figure 8.1. For the Limbo case, we only need the
OSGi component ontology among all the semantic component models. SACoCo (Semantic
architecture, component, and connectors) ontologies can be applied to any other situations
for software architecture and configuration validation, other than Limbo.

ArchStyle

Atomic

Connector

Service

ComponentComposite

Connector ontology

Legend

import

concept

contains

ArchRule
<<import>>

EJB OSGi Fractal .Net
Corba

CCM

Web

Service

...

Connector Component

Figure 8.1: SACoCo ontologies structure

Besides the rules as detailed in D4.2b (Hansen et al., 2008c), we need to check that
Limbo components (implemented as OSGi components) are correctly referenced, as dis-
cussed in the following section. This is an update of the component reference rule as in
D4.2b (Hansen et al., 2008c), which did not check the details of component interfaces.

8.1.1 Limbo configuration and validation rules

As introduced in (Hansen et al., 2008a), Limbo components are implemented as OSGi bun-
dles. Component Limbo provides a Generator service that Backends use, and will produce
web service stubs and skeletons. At runtime Limbo selects and uses a set of Backends
based on its configuration. The Limbo component requires the presence of at least one
Backend and exactly one Repository. SWRL is used to specify architecture constraints for
Limbo based on the SACoCo models.

SWRL is a Horn clause rules extension to OWL-DL and shares its formal semantics. A
SWRL rule is composed of an antecedent part (body), and a consequent part (head). Both
the body and head consist of positive conjunctions of atoms. A SWRL rule means that if all
the atoms in the antecedent (body) are true, then the consequent (head) must also be true.
In our practice, all variables in SWRL rules bind only to known individuals in an ontology in
order to develop DL-Safe rules to make them decidable. In a SWRL rule, the symbol “∧”
means conjunction, and “?x” stands for a variable, “→” means implication, and if there is no

Version 1.1 43 of 64 24 February, 2009

Hydra

“?” in the variable, then it is an instance. Now we will show the configuration and validation
rules, which are the basis for self-configuration rules in D4.8 (Ingstrup and Zhang, 2008).

Check reference relationships

For the OSGi component model and Repository style, the rule
“check_OSGi_Reference_noDetails” retrieves all Repository components in the cur-
rent configuration. If a component has a reference which has cardinality of the form “1.”
(at least one reference to other service), then there must be a component providing that
required service.

Rule: check_OSGi_Reference_noDetails
archstyle : CurrentCon f iguration(?con) ∧
archstyle : hasArchitecturePart(?con, ?comp1) ∧
osgi : componentName(?comp1, ?compname1) ∧
osgi : re f erence(?comp1, ?re f 1) ∧
osgi : cardinality(?re f 1, ?car1) ∧
swrlb : containsIgnoreCase(?car1, “1.”) ∧
osgi : inter f ace(?re f 1, ?inter1) ∧
osgi : inter f aceName(?inter1, ?name1) ∧
archstyle : hasArchitecturePart(?con, ?comp2) ∧
architectureRole(?comp2, ?role2) ∧
archstyle : archPartName(?role2, ?rolename) ∧
swrlb : equal(?rolename, “Repository”) ∧
osgi : service(?comp2, ?ser2) ∧
osgi : provide(?ser2, ?inter2) ∧
osgi : inter f aceName(?inter2, ?name2) ∧
osgi : componentName(?comp2, ?compname2) ∧
swrlb : equal(?name1, ?name2)
→ sqwrl : selectDistinct(?comp1, ?comp2)

Identifying valid component references

Assume that we have two Repository components loaded by DS and the two components
are implementing two Repository interfaces that differ only with the last operation:

URI getHydraOntologyExtension (File wsdlFile);
URI getHydraOntologyExtension (String wsdlFile);

Limbo needs to be bound to the Repository interface that has the signature as the first
method. The Eclipse Equinox DS bundle binds Limbo to the first Repository component that
has the lowest bundle id, without respecting the interface signature it has. If it is bound to the
correct Repository, then Limbo can run successfully. But if the Repository with the lowest
bundle id is the one that provides the same method but with a String parameter, Limbo will
not work.

OWL-S 3 ontologies are simplified to model component behaviors. Here in order
to implement SWRL rules (the reason being that current Protege SWRL APIs can not
parse rdf:XMLLiteral), we changed the range of the data type property parameterValue
to xsd:string defined in the OWL-S Process ontology. The Limbo Repository component
has five operations which are defined as five atomic processes in the Process ontology,
where the return types are modeled as process Outputs, and method signatures are mod-
eled as Inputs. An instance of SimpleProcess is defined which is composed with these
five AtomicProcesses correspondingly. In these Repository Client components, instances
of SimpleProcess for each operation are defined in a similar way. If there is a reference
from the Repository Client to the Repository component in a method, the atomic process
for this method will have a Participant instance which should be the Repository component.

3http://www.w3.org/Submission/OWL-S/

Version 1.1 44 of 64 24 February, 2009

Hydra

The inputs of this atomic process will contain both the signature of the referenced operation
together with its return type, and method signature of itself.

To correctly justify a reference, the component package and component name, method
name, method signature including data type and order, and return type, should be consistent
in both referencing and referenced components. Using the service details as provided by
the ServiceProfile and Process ontologies, we can then retrieve the details of the services
and its method signatures. This rule is named “check_OSGi_Reference_Details” as follows.

Rule: check_OSGi_Reference_Details
BODY_OF_RULE_check_OSGi_Re f erence_noDetails ∧
component : componentServiceDetails(?comp1, ?pr1) ∧
service : presents(?pr1, ?prservice1) ∧
pro f ile : has_process(?prservice1, ?process1) ∧
process : realizedBy(?process1, ?aprocess1) ∧
process : hasInput(?aprocess1, ?input1) ∧
process : parameterValue(?input1, ?ivalue1) ∧
component : componentServiceDetails(?comp2, ?pr2) ∧
service : presents(?pr2, ?prservice2) ∧
pro f ile : has_process(?prservice2, ?process2) ∧
process : realizedBy(?process2, ?aprocess2) ∧
process : hasInput(?aprocess2, ?input2) ∧
process : name(?aprocess2, ?proname2) ∧
process : hasOutput(?aprocess2, ?proout2) ∧
process : parameterValue(?input2, ?ivalue2) ∧
process : parameterValue(?proout2, ?ovalue2) ∧
swrlb : stringConcat(?str1, ?compname2, “ + ”) ∧
swrlb : stringConcat(?str2, ?str1, ?proname2) ∧
swrlb : stringConcat(?str3, ?str2, “#”) ∧
swrlb : stringConcat(?str4, ?str3, ?ivalue2) ∧
swrlb : stringConcat(?str5, ?str4, “$”) ∧
swrlb : stringConcat(?str6, ?str5, ?ovalue2) ∧
swrlb : equal(?ivalue1, ?str6)
→ sqwrl : selectDistinct(?ivalue1, ?comp1, ?comp2, ?str6) ∧ sqwrl : select(“valid references”)

As can be noted from this rule, in a referencing component, the references to another
component is modeled in the hasInput datatype property in Process ontology, in the for-
mat as “component name(including package name)+operation name#input types with or-
ders$return type”. Then this information is compared with that from the referenced compo-
nent with respect to a specific interface, which is modeled as an atomic process. If they are
exactly matched, then the references are valid.

8.2 Power consumption and QoS considerations of com-
munication technologies for web service generation

We have tested that SOAP over UDP has better throughput over wireless network (e.g.
Wifi network), and over the mix between wireless and wired network as shown in D5.9
(Sperandio et al., 2008). Here we summarize our tests in the following tables (Table 8.1,
Table 8.2), with additions on the average power consumption for Hama Bluetooth dongle.

Table 8.1: Power consumption for Nokia N95 and Hama Bluetooth dongle

BTClient BTServer Idle

Nokia N95 0.488w 0.2395w
Hama BT Dongle 0.092w 0.051w 0.037w

Version 1.1 45 of 64 24 February, 2009

Hydra

Table 8.2: Power consumption for D-link DWL-G122 WIFI Dongle

D-link DWL-G122 WIFI Dongle

TCP client 1.358w
server 1.356w

UDP client 1.36w
server 1.359w

idle 1.344w

From Table 8.1 and Table 8.2, we could notice that SOAP over Bluetooth consume much
less power than SOAP over UDP or SOAP over TCP. This knowledge will be used to guide
the code generation of Limbo when power consumption should be considered in web ser-
vices.

Table 8.3: Performance tests of TCP/UDP transportation

Wired Client Wireless Client

Wired server wireless server wireless server
TCP RTC 3.5ms 21.5ms 25.99ms

Throughput 2311.23 401.25 340.73
UDP RTC 3.44ms 8.16ms 7.5ms

Throughput 2311.616 954.44 1009.86
goodput 100% 99.93% 99.90%

BT RTC 669.62ms
Throughput 18.01

For Table 8.3, we can conclude that:

• If wireless network is involved in a web service call, SOAP over UDP has better
throughput than SOAP over TCP, and of course than SOAP over bluetooth.

• SOAP over UDP has good goodput, which can be used for normal web service calls
without high reliability requirements.

• For wired network, SOAP over UDP and SOAP over TCP has equal performance.

• For fast response from a service, i.e. a short RTC (round trip call) time, we need to
use the SOAP over UDP.

This knowledge will be considered for guiding the code generation of Limbo, if QoS is
required for the generated code:

• SOAP over UDP should be generated if a wireless network is involved in a web service
call for good throughput, if reliability is not critical.

• SOAP over TCP should be generated for highest reliability.

• SOAP over Bluetooth should be generated for best power consumption requirement.

Version 1.1 46 of 64 24 February, 2009

Hydra

• SOAP over UDP should be used in any case (if there is an IP stack and a device has
the capability to make use of the TCP/IP connection) for fast response from a web
service.

We will use SWRL to implement these conclusions and guide the web service generation
process for Limbo by processing these rules. What is more interesting is the usage of this
knowledge at runtime to realize the self-management activities according to certain QoS
requirements, where a number of services are involved. These requirements are possibly
conflict with each other, for example both power consumption and response time should be
within certain limits. How to find an optimal solution is a global multi-objective optimization
problem, and can be resolved using genetic algorithms as outlined in deliverable D4.8, and
remains ongoing work.

As can be noted from above, the generation type of web service for a device depends
on:

• Device capabilities: Network capabilities of the device, software capabilities, hardware
capabilities (e.g. CPU). The device capabilities are described in Device ontologies
(Hardware ontology, Software platform ontology) in deliverable D4.2 (Hansen et al.,
2007).

• QoS requirements, including the service response time, throughput, and power con-
sumption requirements, as modeled in QoS ontologies discussed in deliverable D4.8
(Ingstrup and Zhang, 2008).

Therefore now we need to upgrade our generation rules compared to the former deliverables
(Hansen et al., 2007), (Hansen et al., 2008c), due to the considerations of QoS parameters
for code generation, in which communication protocols are considered.

A first draft of the QoS ontology is briefly discussed in D4.5 (Scholten and Shi, 2008),
and an enhanced version is developed in D4.8 (Ingstrup and Zhang, 2008) in which the
necessary QoS parameters (These parameters can cover what we needed for guiding the
code generation process for Limbo, as analyzed above) that are considered, including:

• Bandwidth, or throughput

• Latency

• ErrorRate

• Availability, including both network availability, and service availability

• Reliability

• Security

• Accuracy (of measurement, operation)

• Speed (of operation, service)

• PowerDrain (of service execution, of operation)

• Cost

Now we will make use of Device ontologies, QoS ontologies and LimboConfig ontology to
implement SWRL rules to guide the generation process considering the QoS characteristics
of different transportation protocols. This also paves the way for considering other QoS
parameters for code generation, for example when the RESTful web service is ready, we
can then add rules to choose what kind of web services should be used in what situations,
using the same set of ontologies.

Version 1.1 47 of 64 24 February, 2009

Hydra

8.3 SWRL rules for guiding the Limbo web service code
generation

Currently it is the developer’s responsibility to chose which communication protocol to use
for SOAP transportation. We need to automate this process using SWRL rules, and will
implement it as a separate configuration component.

The following rule will make sure that if the throughput requirement for a device is greater
than 800 kBps, which does not have a CPU, i.e. that should generate a proxy service for
this device, should use the SOAP over UDP as the underlying transportation protocol, as
there is no further QoS requirements for reliability.

Rule: genUDP
device : HydraDevice(?a) ∧
device : hasHarware(?a, ?h) ∧
hardware : primaryCPU(?h, ?c) ∧
hardware : cpuName(?c, ?b) ∧
swrlb : equal(?b, ”No”) ∧
qosspec : hasDemand(?ser, ?demand) ∧
qos : hasMetric(?demand, ?metric) ∧
QoSmetric : hasParameter(?metric, ?para) ∧
QoSmetric : parameterName(?para, ?pname) ∧
swrlb : equal(?pname, ”throughput”) ∧
QoSmetric : Value(?para, ?v) ∧
QoSmetric : hasUnit(?para, ?unit) ∧
abox : hasURI(?unit, ?uri) ∧
swrlb : contains(?uri, ”kBps”) ∧
swrlb : greaterThan(?v, 800) ∧
limbogen : GenerationType(?current)→ sqwrl : select(?a, ?demand, ?current) ∧
limbogen : genTransportation(?current, limbogen : UDP)

Similarly, a battery consumption requirement for a device will probably make it necessary
to make use of the SOAP over bluetooth, as shown in the following rule.

Rule: genBT
device : HydraDevice(?a) ∧
device : hasHarware(?a, ?h) ∧
hardware : primaryCPU(?h, ?c) ∧
hardware : cpuName(?c, ?b) ∧
swrlb : equal(?b, ”ARM”) ∧
qosspec : hasDemand(?ser, ?demand) ∧
qos : hasMetric(?demand, ?metric) ∧
QoSmetric : hasParameter(?metric, ?para) ∧
QoSmetric : parameterName(?para, ?pname) ∧
swrlb : equal(?pname, ”batteryDrain”) ∧
QoSmetric : Value(?para, ?v) ∧
QoSmetric : hasUnit(?para, ?unit) ∧
abox : hasURI(?unit, ?uri) ∧
swrlb : contains(?uri, ”watt”) ∧
swrlb : lessThan(?v, 0.5) ∧
limbogen : GenerationType(?current)→ sqwrl : select(?a, ?demand, ?current) ∧
limbogen : genTransportation(?current, limbogen : BT)

8.4 Prototype implementation

In accordance with the problem that Equinox is not working well in the open computing
environments, the prototype is implemented to improve Eclipse Equinox’s capabilities of
awareness of component semantics based on SACoCo ontologies, QoS ontologies, Device
ontologies, LimboConfig ontology. Architectural styles and component configurations vali-
dating are conducted at run time. The architecture of the prototype implementation is shown
in Figure 8.2, in which there are EnhancedEquinoxDS bundle, LimboConfigValidation bun-
dle.

Version 1.1 48 of 64 24 February, 2009

Hydra

EnhancedEquinox

BindingListener

EventAdmin

OntologyUpdate
BindingEventsHandler

LimboConfigValidation

OSGiComponent LimboConfiguration...
SACoCo ontologies+simplified OWL-S ontologies+

Device ontologies+QoS

ontologies+LimboConfiguration

ontology/SWRL rules

RlueProcessing RuleGroupProcessing

Validation Configuration

Figure 8.2: Limbo configuration and validation prototype architecture

This EnhancedEquinoxDS bundle is used (which is an extension to the original imple-
mentation) to discover and maintain a model of the component instance topology, where
there is a Binding Listener that knows when services are bound to (and unbound from)
components. Whenever such an event happens, the Binding Listener uses the standard
OSGi Event Admin that provides a topic-based publish/subscribe service. This enables the
Limbo configurator to maintain a model of component instances, their services, and their re-
lationships. The registered services of the component are retrieved from the bundle context
of the component.

In order to get detailed information about the services provided by the components that
are loaded in the OSGi framework, the LimboConfigValidation bundle gets a list of enabled
component description properties from the EnhancedEquinoxDS bundle (as another exten-
sion to the original DS implementation). These component details are then updated into
the SACoCo models as a set of component instances to be validated. Based on this infor-
mation, the LimboConfigValidation bundle validates component configurations by executing
the related SWRL rules, and inferring whether they are valid or invalid, whether services
are matching or not according to semantic constraints specified as outlined in the former
sections.

We are using the Protege-OWL/SWRL APIs4 (which are the only SWRL APIs currently
available) for the prototype implementation to validate Limbo architectural style and configu-
rations. From our experience, SWRL rule grouping will enhance the performance of valida-
tion (Zhang and Hansen, 2008). Therefore, in the prototype, all rules in a step are executed
with the rule grouping features, for example the checking of the Repository style elements
can be executed with the key word of “check_RepositoryStyle” from the rule names, and the
key words can be combined with boolean operations.

The RuleProcessing component is used to execute a single rule and to retrieve the cor-
responding results. The RuleProcessing component is responsible for the execution of a
rule group. Currently the rule grouping is based on the name of the SWRL rules, which can
be logically combined (e.g. AND, OR). The rule processing features are generic and can be
used to process all different kinds of rules, i.e. they are independent of architecture styles,
components/connectors.

4http://protege.stanford.edu/

Version 1.1 49 of 64 24 February, 2009

Hydra

The rules for guiding the generation process considering the QoS requirements are
ready as shown above, but are not integrated into this prototype yet and will be finished
in the near future.

Version 1.1 50 of 64 24 February, 2009

Hydra

9 Integration between Rule-based configuration
management, ASL and Limbo

The Architectural Scripting Language is a set of operations used to manipulate an archi-
tecture. Limbo is the Hydra-developed configurable web service compiler for embedded
devices. In combination with the rule-based and ontology-based reasoning they form a
powerful tool-suite for managing the inherent complexity of building a distributed system for
deployment on a heterogeneous set of embedded devices, that is, one with multiple simul-
taneous target platforms. In this chapter we describe the integration of these tools.

The overall workflow when using these tools to build a system has three steps. First,
the rule based reasoning engine tool determines a target configuration. The notion of a
target configuration is construed broadly, as a set of architectural entities obeying a set
of constraints. The entities are architectural, and could be binary components and target
platforms for a deployment view; a set of modules or packages for a module-view; or a set of
services and connectors for a runtime view, to name a subset. Second, the configuration is
used to generate an ASL script that when executed with the required resources will generate
the target configuration. This is described in section 9.2. Third, in order to generate code
as specified in the target configuration ASL needs to configure Limbo with the backends
capable of producing code for the right platform. The design for enabling ASL to configure
Limbo is described in the following section.

9.1 Integration of Limbo with ASL

In one form ASL is a set of tasks that extend the well known configuration management tool
ANT. It is described in (Ingstrup and Zhang, 2008), with a tutorial in (Atta Badii and Adedayo
Adetoye (Ed), 2008). The functionality of ANT-based ASL is accessed as a set of operations
for:

• Starting and stopping devices

• Deploying and undeploying components (bundles for OSGi)

• Starting and stopping services (likewise bundles in OSGi)

• Binding and Unbinding interfaces (service-interfaces in the case of OSGi)

There are in principle two ways to integrate ASL and Limbo. First, since Limbo itself
is configurable its configuration can be managed with ASL. Doing so is useful because
the configuration of limbo is a natural part of the subsequent compilation, a task in the
development process that can also be automated with ANT. Second, ASL can be extended
with support for the Limbo target platforms, so that it can be used to deploy the services
limbo compiles. Since the second is an ASL specific extension and relies on the first, we
have focused on the first case of using ASL to configure Limbo itself.

In this section we describe a design for integrating ASL with Limbo. The design has
not been implemented in full at this point, although important parts of it are in place. In
particular, ASL already supports the OSGi platform that Limbo is implemented with.

Limbo’s architecture consists of the compiler component (bundle) itself, a repository bun-
dle, a number of frontend as well as a number of backend components. These are bound
together using the OSGi’s notion of service-interfaces. In order set up a configuration of

Version 1.1 51 of 64 24 February, 2009

Hydra

Limbo, a series of architectural operations are required (the parentheses gives the name of
the ASL operation used to accomplish this step:

1. An instance of the OSGi framework/platform must be started (using start_device())

2. The bundle jar files for the components used in the desired configuration must be
available (using define_component())

3. The components are deployed to the running instance of the platform (using de-
ploy_component)

4. The components are started in the correct sequence. Once started they an-
nounce their service-interfaces so that other bundles can be bound to them.
(start_component())

5. The components of Limbo are bound (using bind_interfaces()).

At this point all of the steps are supported in ASL, and the integration only requires modifying
the Limbo components so they support the bind_interfaces() operation of ASL.

In Java based OSGi, a service-interface is just a java interface type. A client component
has an object (client-object) with a variable that references the server component’s imple-
mentation of that interface. The server component that provides a service-interface has
an object implementing this service-interface, and that is registered with, and obtainable
through, the OSGi runtime. The ASL bind operation needs a reference to both the client-
object and the server-implementation, because it needs to set the client-object’s variable so
that it points to the server component’s implementation of that interface.

ASL is able to obtain references to these two objects as follows. The server-
implementation object is easily obtained through look-up of the service interface in the
OSGi runtime. The client-object is obtained using a special interface Bindable, which
the client component must implement. The bindable interface has two methods, getBind-
Method(String class) and getUnbindMethod(String class). They are used to get, given the
class, the name of the method on the client-object that is used to set its reference to the
server-implementation.

9.2 Configurations with ASL scripts

An ASL script operates on a configuration of architectural entities, in this case a set of
compilation units that should be compiled to generate deployable units, web services. Nu-
merous constraints may exist among devices, web-services, compiled components etc. For
instance, a SOAP-over-Bluetooth web service should only be deployed to a device with
Bluetooth communication. The generated ASL scriptis only correct if it does not violate such
a constraint.

Formally, the execution of an ASL script can be modeled as a trace. An ASL script is
a list of ASL operations with specific values as parameters. A script operates on a start-
configuration when it is executed. After the first operation, say start_device(), this configu-
ration is modified by having a new active device; as such we have a new configuration after
each step in the script execution. The trace of a script execution is a list of such intermedi-
ate configurations, and the transition between two adjacent configurations is an invocation
of an ASL operation. That is, the call of an ASL operation with specific values assigned to
its parameters and to the script-properties it reads.

Version 1.1 52 of 64 24 February, 2009

Hydra

A script execution is correct if none of the configurations in its trace violate the relevant
constraints on the system configuration, and if none of the operation-invocations are illegal
for the configuration they operate on. For instance, a device cannot be started before it is
defined, and components cannot be deployed onto it if it has not been started beforehand.

9.3 Integration of SWRL reasoning with ASL for the Limbo
code generation

The execution of rules Rule: genUDP and Rule: genBT will tell us that the current Limbo
configuration should use the “UDP”, and “BT” transportations respectively. These kind of
reasoning results can be inserted into an ASL script-template, so they are fed as the cor-
responding parameters for the Limbo compilation. A script-template is just a script which is
incomplete because, in this case, the paramters for Limbo must be added to complete the
script. In this case, it is the “-c” parameter for choosing the SOAP transportation approach.

As shown in rules Rule: check_OSGi_Reference_Details and Rule:
check_OSGi_Reference_noDetails, and also the rules shown in deliverable D4.2b
(Hansen et al., 2008c), it is possible to tell whether the current set of Limbo components is
a valid configuration or not.

Once the target configuration has been decided, an ASL script needs to be generated
which can actuate the configuration. This can be done with a simple template that the
output form the rule-based semantic reasoning is filled into to generate a complete script.
The ASL interpreter can then be used to actuate these Limbo components to generate
code, and potentially further to compile the generated code, and make the services runnable
automatically. This remains as to be further explored.

Version 1.1 53 of 64 24 February, 2009

Hydra

10 Conclusion and future work

Limbo is extended with the support of the generation of Hydra specific services, the genera-
tion of Eclipse specific project files in order to ease of the usage of the generated pervasive
web services for the developer, and the generation of SOAP transportation over different
communication protocols including TCP, UDP and Bluetooth, based on study made in D5.9
(Sperandio et al., 2008). Hence now Limbo is capable of considering QoS while generating
pervasive web service code. We also add initial support for Limbo to generate RESTful web
services.

In the future Limbo will work on automatic selection of the most suitable protocol con-
sidering QoS that will take into account several network parameters and give the correct
configuration to Limbo. As future work we will add full support in Limbo for RESTful ser-
vices, we will also work on the issues raised by developers on interoperability of Limbo
generated code with AXIS and PHP, and we will work on in the support for .NET services.

Version 1.1 54 of 64 24 February, 2009

Bibliography

Atta Badii and Adedayo Adetoye (Ed) (2008). External developers workshops teaching
material. Technical Report D12.5, Hydra Consortium. IST 2005-034891.

Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California.

Hansen, K. M., Soares, G., and Zhang, W. (2007). Embedded Service SDK Prototype and
Report. Technical Report D4.2, Hydra Consortium. IST 2005-034891.

Hansen, K. M., Zhang, W., and Fernandes, J. (2008a). Osgi based and ontology-enabled
generation of pervasive web services. In 15th Asia-Pacific Software Engineering Confer-
ence, pages 135–142, Beijing, China.

Hansen, K. M., Zhang, W., Fernandes, J., and Ingstrup, M. (2008b). Semantic web ontolo-
gies for ambient intelligence: runtime monitoring of semantic component constraints. In
Proceedings of the First International Research Workshop on The Internet of Things and
Services, Sophia-Antipolis, France.

Hansen, K. M., Zhang, W., Fernandes, J., Sperandio, P., and Ferrarini, M. (2008c). Em-
bedded Service SDK Prototype and Report-version 2. Technical Report D4.2b, Hydra
Consortium. IST 2005-034891.

Hansen, K. M., Zhang, W., and Soares, G. (2008d). Ontology-enabled generation of em-
bedded web services. In Proceedings of the 20th International Conference on Software
Engineering and Knowledge Engineering, pages 345–350, Redwood City, San Francisco
Bay, USA.

Ingstrup, M., Hansen, K. M., and Zhang, W. (2008). Self-* properties SDK prototype and
report. Technical Report D4.3, Hydra Consortium. IST 2005-034891.

Ingstrup, M. and Zhang, W. (2008). Self* properties DDK Prototype and Report. Technical
Report D4.8, Hydra Consortium. IST 2005-034891.

Scholten, M. and Shi, L. (2008). Quality-of-Service Enabled HYDRA Middleware. Technical
Report D4.5, Hydra Consortium. IST 2005-034891.

Sperandio, P., Antolin, P., and Bublitz, S. (2007). Draft of Wireless Devices Integration.
Technical Report D5.4, Hydra Consortium. IST 2005-034891.

Sperandio, P., Bublitz, S., and Fernandes, J. (2008). Wireless Device Discovery and Testing
Environment. Technical Report D5.9, Hydra Consortium. IST 2005-034891.

Zhang, W. and Hansen, K. M. (2008). Semantic web based self-management for a pervasive
service middleware. In Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2008), pages 245–254, Venice, Italy.

55

Hydra

A Published Papers

A.1 Paper 1: Semantic Web ontologies for Ambient Intel-
ligence: Runtime Monitoring of Semantic Component
Constraints

please see the appendix of D 4.8 (Ingstrup and Zhang, 2008).

A.2 Paper 2: Towards Self-Managed Executable Petri Nets

please see the appendix of D 4.8 (Ingstrup and Zhang, 2008).

A.3 Paper 3: Semantic Web based Self-management for a
Pervasive Service Middleware

please see the appendix of D 4.8 (Ingstrup and Zhang, 2008).

A.4 Paper 4: Towards Self-managed Pervasive Middle-
ware using OWL/SWRL ontologies

please see the appendix of D 4.8 (Ingstrup and Zhang, 2008).

A.5 Paper 5: An OWL/SWRL based Diagnosis Approach
in a Pervasive Middleware

please see the appendix of D 4.8 (Ingstrup and Zhang, 2008).

A.6 Paper 6: Flexible Generation of Pervasive Web Ser-
vices Using OSGi Declarative Services and OWL On-
tologies

Version 1.1 56 of 64 24 February, 2009

Flexible Generation of Pervasive Web Services using OSGi Declarative Services
and OWL Ontologies

Klaus Marius Hansen and Weishan Zhang and João Fernandes
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Århus N, Denmark
{klaus.m.hansen,zhangws,jfmf}@cs.au.dk

Abstract

There is a growing trend to deploy web services in per-
vasive computing environments. Implementing web services
on networked, embedded devices leads to a set of chal-
lenges, including productivity of development, efficiency of
web services, and handling of variability and dependencies
of hardware and software platforms. To address these chal-
lenges, we developed a web service compiler called Limbo,
in which Web Ontology Language (OWL) ontologies are
used to make the Limbo compiler aware of its compila-
tion context such as device hardware and software details,
platform dependencies, and resource/power consumption.
The ontologies are used to configure Limbo for generat-
ing resource-efficient web service code. The architecture of
Limbo follows the Blackboard architectural style and Limbo
is implemented using the OSGi Declarative Services com-
ponent model. The component model provides high flexi-
bility for adding new compilation features. A number of
evaluations show that the Limbo compiler is successful in
terms of performance, completeness, and usability.

1 Motivation and introduction

Web services promise interoperable, composable, and
reusable services in architectures in which Service-Oriented
Architecture principles are employed. Increasingly, and
from a deployment viewpoint, such architectures also in-
cludes resource-constrained embedded devices.

On the other hand, we are facing a number of challenges
for implementing web services on devices. First, web ser-
vices should be sufficiently efficient in order to provide
usable services on small devices, because embedded de-
vices are constrained in memory, processor and energy re-
sources. Secondly, development of embedded web services
must handle variability of hardware and software, and pos-
sible dependencies between hardware and software. This

is particularly true when different implementation language
and communication protocols are involved. And, finally, is
the question how to support developers of pervasive web
service applications in order to improve productivity.

Code generation is an effective way to improve reuse and
to improve the productivity as for the last challenge men-
tioned. To support this, we have developed an OSGi1-based
and ontology-enabled web service compiler called Limbo to
generate resource-efficient code. Limbo is part of a larger
project, Hydra2, in which middleware for networked em-
bedded devices is researched and developed.

The idea behind Limbo is: from the methodological
point of view, we propose using OWL3 ontologies to en-
code device hardware and software details, including their
dependencies, which can then be used as compiling con-
texts during code generation for a specific device; from
the architecture design point of view, we use of the Black-
board architectural style realized through the OSGi plat-
form. This OSGi-based implementation of Blackboard ar-
chitecture make the adding of compiling for different tar-
geted platform dynamic without affecting existing compo-
nents. In this way, we liberate the developer the headache
of understanding details and dependencies of various plat-
forms, and at the same time can generate resource efficient
code according to requirements and the details of a de-
vice. This paper describes our experiences with using OSGi
while previous papers focus on the use of ontologies [4, 3].

The rest of the paper is structured as follows: in Sec-
tion 2, we present the design and architecture of Limbo;
followed by is the section on the OSGi-based Limbo imple-
mentation, illustrated with UPnP4 plugin, and we describe
how to use the generated code for the development of web
services. Section 4 discusses ontologies used in Limbo and
state machine code generation. Then we present an evalu-
ation of web services generated by the Limbo compiler in

1http://www.osgi.org
2http://www.hydramiddleware.eu
3http://www.w3.org/2004/OWL/
4http://www.upnp.org/

2008 15th Asia-Pacific Software Engineering Conference

1530-1362/08 $25.00 © 2008 IEEE

DOI 10.1109/APSEC.2008.73

135

Section 5, from the perspective of complexity, usability and
performance. We compare our work with related work in
section 6. Conclusions and future work end the paper.

2 Limbo design

2.1 Limbo architecture

The Limbo compiler should be flexible in terms of, e.g.,
supporting different type of communication protocols, ser-
vice discovery protocols, and also programming platforms.
WSDL (Web Services Description Language) 5 is an XML-
based language for describing Web services and how to
access them, and should be used as central point for web
service generation. Such files are provided as input to
Limbo and Limbo follows the “Blackboard” architectural
patterns [7] in which a central Repository stores data (ini-
tially WSDL data) related to the transformation process and
on which Frontends and Backends operate to read and write
information.

Figure 1 shows the module structure of the Limbo com-
piler. Frontends generally process source artifacts (in par-
ticular web service interface descriptions in the form of
WSDL files and ontology descriptions in the form of OWL
files). Conversely, Backends produce target artifacts in the
form of code (including web service stubs and skeletons,
state machine stubs, device and service descriptions) and
configuration files.

com.eu.hydra.limbo

frontend repository backend

wsdl

soap rest

generator

parser

statemachine transport

clientside serverside

ontology

upnp

Figure 1. Module structure of Limbo

Backends may have different features. An essential fea-
ture is the parser backends with different implementation
languages such as Java SE/Java ME (Java Standard Edi-
tion/Java Micro Edition). There may also be requirements
for generation of client-side stubs and/or server-side skele-
tons, and for transport code for network communication be-

5Web Services Description Language 1.1. http://www.w3.org/
TR/wsdl

tween client and a server. To provide the possibility of han-
dling dynamicity of device state changes, a state machine
backend is designed to generate state machine stubs. At
runtime, when executing the service, these state machines
are intended to report relevant state changes of the device.

To provide the possibility of finding devices supporting
different communication protocol, service discovery back-
end is also developed. UDDI6 is designed for wired net-
work for service discovery, which is not suitable for per-
vasive computing environment. For the Hydra middleware,
UPnP is chosen as the main protocol for service discovery,
therefore, we also have a UPnP backend, which is used to
generate the UPnP device description, and the service de-
scription, in order to make both device and service available
for UPnP to work with, so that the device can be discover-
able by UPnP. This makes use of an ontology description of
the device and service. Our use of ontologies is described
next.

2.2 Extending WSDL for ontology binding

Originally WSDL has nothing to do with (OWL) ontolo-
gies. Recently, there have however been a number of ef-
forts to link OWL with WSDL, for example OWL-S7 and
SAWSDL8. OWL-S is targeting automatic selection, com-
position, and execution of web services, which is quite dif-
ferent from what we require for linking WSDL with web
service generation. Also OWL-S is heavy-weight solution
in that it requires a major shift from WSDL to describe se-
mantic services. SAWSDL is light-weight and links the ser-
vice defined in a WSDL file to external sources of semantic
description in OWL. This work inspired us to extend the
semantics of WSDL binding, through a hydra:binding, in
order to make use of ontologies during compilation. This
new binding must refer to a device instance in our Device
ontology (which imports other ontologies). An example of
a Hydra ontology binding for thermometer in WSDL would
be the following:

<hydra:binding device="http://hydra.eu.com/ontology/
Device.owl#thermometer"/>

Formally, this extension appears as follows in a defini-
tion of WSDL:

<wsdl:binding name="nmtoken" type="qname">*
<-- extensibility element --> *
<hydra:binding device="uri">?
<wsdl:operation name="nmtoken">*
...
</wsdl:operation>
</wsdl:binding>

The Limbo ontology frontend will resolve this URI and
retrieve thermometer hardware and software information.

6http://www.uddi.org/
7http://www.w3.org/Submission/OWL-S/
8http://www.w3.org/2002/ws/sawsdl/

136

2.3 Limbo compilatio process

Provide WSDL

service description

Provide Limbo

configuration

Generate

based on

configuration

Generate based

on ontology

[Ontology available]

[Ontology not available]

Create embedded

stubs and

skeletons

Create proxy

stubs

and skeletons

[Resources

available

on device]

[Resources not

available

on device]

Limbo compilation process

Generate

State

machine

[State

machine

needed]

Generate

UPnP for

UPnP devices

Generate

UPnP

for devices

Figure 2. Limbo compiling process

Figure 2 shows the compilation process of the Limbo
compiler. In this paper, a “thermometer service” is used
to illustrate the compilation and the usage of the generated
artifacts. In the example, the service runs on a thermometer
device, Pico TH03, and provides a temperature measure-
ment upon request. The following steps are involved:

• Provide WSDL service description: The main input for
Limbo is a WSDL file, and Limbo also supports that
WSDL files reference the Hydra device ontology.

• Generation based on configuration or ontology. If an
ontology instance for the device is available and ref-
erenced, device specific platform information will be
used to generate client and/or server code. Otherwise,
generation configuration is based solely on developer-
supplied parameters.

• Create embedded/proxy stubs and skeletons. Stubs and
skeletons for the device service are created according
to the device capability. If there are not (enough) re-
sources for running code directly on devices, proxy
code is generated based on OSGi. For the thermome-
ter, as it does not have any computing capability itself
according to the retrieved platform information from
the ontology, proxy code will be generated. Currently,
Limbo supports Java SE and Java ME code generation.

• Generate device state machine stubs. If a device state
machine instance is available in the StateMachine on-
tology which is imported by the Device ontology, and

Limbo is configured to generate state machines, then
state machine stubs will be generated for a device.

• Generate UPnP device description and service de-
scription. If a device supports UPnP, then the gener-
ation will be based on the default UPnP information
provided by the device manufactures, or else the de-
vice description will be based on the information in the
Device ontology, and UPnP service description will be
generated based on WSDL description.

3 OSGi-based implementation of Limbo

3.1 OSGi Declarative Services

OSGi provides a set of services per default [6], one
of which is management of Declarative Services. OSGi’s
Declarative Services (OSGi-DS) Specification [6] enables
developers on the OSGi platform to declaratively manage
service composition at runtime. Concretely, OSGi DS al-
lows OSGi bundle developers to provide a XML-based de-
scription of components that may be instantiated at runtime
to provide and require services. The following list shows
an example of such a description which specifies the main
component (LimboComponent) of the Limbo compiler.

<?xml version="1.0" encoding="UTF-8"?>
<component name="com.eu.hydra.limbo">
<implementation class="com.eu.hydra.limbo.LimboComponent"/>
<service>

<provide interface="com.eu.hydra.limbo.generator.Generator"/>
</service>
<reference name="BACKEND"

interface="com.eu.hydra.limbo.backend.Backend"
cardinality="1..n"
policy="dynamic"
bind="addBackend"
unbind="removeBackend"/>

<reference name="FRONTEND"
interface="com.eu.hydra.limbo.frontend.Frontend"
cardinality="1..n"
.../>

<reference name="REPOSITORY"
interface="com.eu.hydra.limbo.repository"
cardinality="1..1"
.../>

</component>

3.2 LimboComponent

The LimboComponent provides the Generator service
that both Frontends and Backends may use. Frontends pro-
cess source artifacts whereas Backends produce output arti-
facts (such as web service stubs and skeletons). Both Back-
ends and Frontends may use a single Repository.

Furthermore, the LimboComponent requires the pres-
ence of at least one Frontend and at least one Backend and
one Repository. When these services are available, the ref-
erences are said to be satisfied and the component may be

137

activated. Essentially, OSGi DS provides a way for compo-
nents to specify provided and required services (in the form
of Java interfaces) declaratively so that the OSGi framework
can resolve service ependencies dynamically. This kind
of constraints are specified with Semantic Web Rule Lan-
guge9 (SWRL) rules and implemented using another OSGi
component called LimboConfigurator, details of which are
given in [3].

3.3 Limbo Plug-In Model

OSGi provides a service-oriented component-based plat-
form for use by systems that require dynamic updates, and
minimal disruptions to the running environment. This pro-
vides us more flexibility than the Blackboard architecture
itself by allowing dynamically adding new compilation fea-
tures, for example, the supporting of new service discovery
protocols, and new requirement for generating code for dif-
ferent platforms.

A Limbo plug-in is a normal OSGi bundle and as such
needs to implement the BundleActivator interface of OSGi.
This interface has two methods, start and stop, which
are used to start and stop the bundle respectively. In the
method start, we register service interface that Limbo
provides (the Generator interface).

The Generator interface has the following methods:

public interface Generator {
void addBackend(Backend backend);
void removeBackend(Backend backend);
void addFrontend(Frontend frontend);
void removeFrontend(Frontend frontend);
Repository getRepository();}

This allow plug-ins to register Backend services (that
provide extra generation facilities) and Frontend services
(that may add extra preprocessing) and to access the Repos-
itory that contains the code generation artifacts.

Furthermore, the backend plug-ins typically implement
the Backend interface:

public interface Backend {
public void generate(Repository repository) throws Exception;}

When compiling, Limbo will invoke the generate
method on all Backends.

3.3.1 UPnP component

The UPnP component is an example of a plug-in. The
component creates device services that are discoverable by
the UPnP protocol. The creation involves the generation
of UPnP device and service descriptions in XML syntax.
The generated code makes these descriptions including the

9http://www.w3.org/Submission/SWRL/

devices’ capabilities available on the network, so other de-
vices can learn about the device. The UPnP component has
the following description in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<component name="com.eu.hydra.upnp.upnpcomponent">
<implementation class="com.eu.hydra.upnp.UPnPComponent"/>
<property name="platform">
JSE
</property>
<service>
<provide interface="com.eu.hydra.limbo.backend.Backend"/>
</service>
<reference name="Repository"
interface="com.eu.hydra.limbo.repository.Repository"
cardinality="1..1"
policy="dynamic"
bind="setRepository"
unbind="unsetRepository"
/>
</component>

3.4 Implementing services based on generated
code

For the thermometer with a configuration of web services
on the OSGi platform, the following classes will be gener-
ated:

• Activator.java: Defines start and stop methods for the
thermometer service bundle.

• th03OpsImpl.java: Implementation of the service
methods.

• th03Parser.java: Parser for SOAP messages.

• LimboServlet.java: A service class extends
HttpServlet that handles requests and returns the
respective results.

• ThermometerSMStub.java: State machine code uti-
lized to handle the self-management features in Hydra.

For a thermometer client, the following classes are gener-
ated:

• LimboClient.java: Client main method to call the ther-
mometer services.

• LimboClientHeaderParser.java: HTTP header parser.

• th03LimboClientParser.java: Parser for SOAP mes-
sages.

• th03LimboClientPort.java: Stub methods for the ther-
mometer services.

• th03LimboClientPortImpl.java: Implementation for
the stub methods.

To make the Thermometer discoverable, UPnP descrip-
tions are generated as followed:

138

• PicoTh03.xml: Thermometer PicoTh03 UPnP device
description, including model name, device type and so
on.

• Th03Service_scpd.xml: Thermometer service as de-
fined in Th03 WSDL file, following the UPnP speci-
fication.

The generation configuration can also be for Java ME
server (extends the MIDlet class) or Java SE, but the gen-
eral runtime architecture will remain the same as shown in
Figure 3.

Based on the generated artifacts, the device developer
needs to implement the device service. The development
process includes:

• Binding the device services to the actual device. For
the thermometer service this would include, e.g., cre-
ating a thread that continuously calculates the temper-
ature based on sensor input and stores the temperature
in a local variable. The actual service implementation
would then read the value of this variable and return
the temperature.

• Sending state notifications. The statemachine stub
needs to be invoked at proper places. In the case of
the thermometer, each successive call will at runtime
trigger an event being sent through a publish/subscribe
system (Figure 3): when the thermometer is started,
when it is measuring, and when it stops.

• Create deployment artifacts. Next, device and
container-specific deployment artifacts (JAR files,
OSGi bundles etc.) need to be created in order to be
able to deploy the service.

The left part of Figure 3 shows a typical runtime of a de-
ployed Limbo service. The thermometer service is deployed
on a Thermometer Device. A service that needs temperature
data (“Thermometer Client”) then uses the thermometer ser-
vice through its web service interface. The state changes
internally in the device triggers events sent through a pub-
lish/subscribe mechanism.

:Thermometer

Service

:Thermometer Device :Event Manager

:Event

Manager

Service

:Thermometer

Client

EventManagerServiceThermometerService

starting Measuring stopping

Figure 3. Thermometer runtime and its sim-
plified state machine

4 Ontologies in Limbo

4.1 Motivation for ontology usage in Limbo

There are a number of reasons for us to use ontologies in
Limbo:

• Knowledge reuse. Some ontologies are used across
all parts of the Hydra middleware. For example, the
Device ontology is used to model device capabilities,
which can be used in Limbo to generate resource-
aware code for services and which can also be used
in self-management

• Complexity hiding. Details for device hardware and
software can be encoded in the related ontologies. Web
service developers only need to know about the device
URI and the service they are implementing, as shown
in the Thermometer example. Dependencies between
software and hardware platforms are rigorously speci-
fied and may be transparent to developers

• Generating resource efficient code. In order to gener-
ate resource-efficient code, knowledge on device soft-
ware platform and resource consumption comparisons
are built into the related ontologies, and used during
the configuration of Limbo for code generation

• Support for device discovery. In order to make devices
discoverable, UPnP device descriptions should be gen-
erated for devices if desired. The ontologies encode
knowledge (such as model name and number) which
is used in UPnP but is not available in a service de-
scription

• Rigorous configuration of components. As not all com-
binations of Limbo components are valid, ontologies
can rigorously regulate combinations of Limbo com-
ponents and resolve dependencies among them

4.2 Details of Ontologies

We have developed the supporting ontologies for Limbo
as shown in Figure 4.

The Device ontology is used to define high-level only
information of a device, e.g., device type classification (e.g.,
an alarm device is a sensor).

The HardwarePlatform ontology includes concepts such
as CPU and Memory, and also relationships between them,
for example ”hasCPU”. Power consumption concepts and
properties for different wireless networks are added to the
HardwarePlatform ontology to facilitate power awareness.

The software platform-related ontologies specify re-
source consumption comparisons for different platforms
using object properties such as requiresMoreMemory,

139

Device

SoftwarePlatform StateMachine

Limbo

Configuration

OperatingSystem JavaDotNet

HardwarePlatformService Error

Service Error Info CapabilityClassification

<<import>>
<<import>>

<<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

<<import>>

OSGiComponent

<<import>>

Figure 4. Structure of Limbo ontologies

reuqiresFasterCPU, and platform dependencies, for exam-
ple, .NET can only run on Windows operating systems if
there are no other supporting software packages.

The StateMachine ontology is used to generate state ma-
chine stubs which are used for self-diagnosis in the Hydra
middleware. The state machine ontology is based on [1]
with several improvements, for example we add a data-type
property hasResult to the Action (including activity) con-
cept in order to check the execution result at runtime.

To enhance the semantics of OSGi component, we de-
veloped an OSGiComponent ontology based on OSGi-DS
where details are given in [3]. Limbo can make use of dif-
ferent backends and frontends for a specific compilation.
Not all combinations of frontends and backends in Limbo
are valid. For example, for OSGi, there is no need for
the Server backend as a web server is built into the OSGi
framework. SWRL10 rules are used specify possible feature
combinations and are validated at run time by a configura-
tor component based on the OSGiComponent ontology as
shown in [3].

In order to generate resource-efficient code, Limbo will
utilize the resource/power consumption knowledge built in
the ontologies. Therefore the LimboConfiguration ontology
imports the Device ontology, and hence all other ontologies
through the ontology import mechanism. Object proper-
ties in the LimboConfiguration ontology (requireCPU, re-
quireOS, requireVM and requireLibrary) are used to specify
a backend’s detailed requirements for the CPU, operating
system, virtual machine and libraries.

5 Evaluation of Limbo

We have evaluated Limbo according to the evalua-
tion framework of one.world [2]. This includes eval-
uating: Completeness: can useful services be gener-
ated;Performance: is the generated services sufficiently re-
source efficient; Complexity and utility: how hard is it to
create services and can others build upon it. The details of

10http://www.w3.org/Submission/SWRL/

the evaluation are related in [4]. Here we summarize the
evaluation results and focus on plug-ins and ontology con-
struction.

5.1 Completeness

We evaluate this through the generation of services for a
set of prototypes for a set of home automation devices. Five
services were created in total, four of them by Hydra mem-
bers that did not participate in the development of Limbo
and one by a Limbo developer. The general conclusion was
that useful services could be generated and that Limbo was
instrumental in supporting this.

The devices for which the services were developed were:

1. Nokia N80

2. HTC P3300 smart phone

3. Pico TH03 thermometer

4. Grundfos Magna 32 pump

5. Abloy EL582 door lock service

For the two first devices, the service were embedded in the
device; for the other devices, an OSGi-based proxy was
generated.

Moreover, the generated state machine code is used suc-
cessfully for the development of self-diagnosis in Hydra,
which shows its usefulness in state-based diagnosis and
other self-management processes. The developer of the
self-diagnosis does not need to have deep knowledge of
web services. The generated eventing code, and state ma-
chine code helps development. The evaluations of the self-
diagnosis show the usefulness of the Limbo compiler.

Furthermore, the following plug-ins have been devel-
oped, demonstrating the plug-in facility:

1. UPnP plugin. This plug-in has been presented previ-
ously in the paper

2. Probe plugin. This plug-in builds probing of mes-
sage sends and message receive into Limbo-generated
services. The information is then used for self-
management purposes in the Hydra middleware

3. StateMachine plug-in. The plug-in generates state ma-
chine stubs based on a statemachine description in the
ontology of a Device

4. LimboConfiguration plug-in. This plug-in implements
the semantic-based component configuration approach
introduced in [3].

140

5.2 Performance

Here we summarize the time and memory usage of
Limbo-generated services. These are compared with
Apache Axis11-generated services. Although Apache Axis
was designed for server environments, this gives an indica-
tion of the level of resources that Limbo-generated services
use.

We used a web service implementing an SMS service
as a test case. This service was implemented directly on
a device (Nokia N80) with Java ME for Limbo and using
Java SE for both Apache Axis and Limbo. Here we show
the results of making five consecutive invocations of the
same service with an Apache Axis client, but the results
are further discussed in [4]. The service running on Nokia
N80 (“Limbo ME”) is significantly slower than the others in
startup because of network setup (we use Nokia’s Raccoon
software12) and because it sends an actual SMS.

Startup 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Time usage

Limbo ME

Limbo SE

Apache Axis

m
s

Figure 5. Limbo time usage

1 2 3 4 5
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

Memory usage

Limbo ME

Limbo SE

Apache AxisK
B

Figure 6. Limbo memory usage

11Apache Axis. http://ws.apache.org/axis
12Nokia Mobile Web Server. http://wiki.opensource.-

nokia.com/projects/Mobile_Web_Server

5.3 Complexity and utility

Our primary means of investigating complexity and util-
ity was through the prototyping of a service for an HTC
P3300 smart phone13. The prototype was made by Hydra
participants not involved in Limbo development. The eval-
uation was successful.

An ontology engineer, who was unfamiliar with the de-
vice, but experienced in ontologies and knowledgeable of
the Hydra ontologies was able to construct needed ontolo-
gies in a day. The resulting ontology is shown in Figure 7.

Figure 7. HTC P3300 ontology overview (Par-
tial)

The Limbo compiler has been shown to be useful with
low resource consumption of the generated code. The gen-
erated code is useful in developing services in Hydra, such
as self-diagnosis service, network management service for
a peer-to-peer network, and can also be used by other de-
velopment outside Hydra.

6 Related work

Compared to the former version of Limbo [4], the new
version based on OSGi-DS is much more flexible and exten-
sible, where no service tracking for backends and frontends
are needed and can be added dynamically, and will be val-
idated by a configurator executing SWRL rules to validate
the configurations as shown in [3]. More features are added
to Limbo with the improved compilation process.

The existing tools and techniques for the development
of (pervasive) web services, such as Microsoft’s Web Ser-
vices on Devices14, kSOAP215, and Fast Infoset16, fall short
of the necessary flexibility of generating different code ar-
tifacts for the large variety of devices based on different
protocols and quality of service requirements. These tools

13http://www.europe.htc.com/en/products/
htcp3300.html

14http://www.microsoft.com/whdc/rally/Rallywsd.mspx
15http://ksoap2.sourceforge.net/
16https://fi.dev.java.net/

141

may thus lack the versatility of being used for different em-
bedded devices. We are making use of ontologies to make
our tool capable of handling different type of devices, and
Limbo can be easily extended to support other service dis-
covery protocols than UPnP.

XML Screamer [5] is an example of a tool that gener-
ates specific XML parsers for a specific XML Schema. Our
work is clearly related to this in that we generate specific
parsers for SOAP XML data described by a WSDL files
(that may also contain an XML Schema specification). So
we cast our work in the context of web services with the pur-
pose of supporting ressource-constrained devices and use
ontologies to guide this process flexibly. XML Screamer
focuses purely on time usage.

Apache Muse17 can be used to build web service inter-
faces for resources an example of which could be devices.
Limbo has a highly flexible architecture which can be eas-
ily extended with the generation of code for .NET code, and
other specialized platform whereas Apache Muse focuses
on specialized specifications. Moreover, we use ontologies
and rule languages to specify and regulate the generation
process.

7 Conclusions and future work

There is an increasing requirement to run web service for
resource-constrained devices in pervasive computing. To
develop pervasive web services for embedded devices with
high productivity, and to create resource efficient code is a
challenge. In this paper, we propose a generation-based per-
vasive web service development approach, powered by sup-
porting OWL ontologies. This approach is exemplified with
a compiler called Limbo for the generation of embedded
web services. Limbo has followed the Blackboard archi-
tecture style and is implemented as OSGi DS components
in Eclipse Equinox, where different frontends and backends
can be easily added.

Limbo gets the targeted device information from a De-
vice ontology that imports a hardware platform ontology
and software platform related ontologies, where resource
consumption comparisons are specified, and used by Limbo
to achieve the generation of resource-efficient web services.
A StateMachine ontology is used to generate state machine
stub code and using a publish/subscribe system to publish
state change events. We are using a configuration ontology
to rigorously specify the legal feature combinations of the
Limbo compiler. To make the embedded devices discover-
able, Limbo can generate UPnP device and service descrip-
tions based on the device information in the Device ontol-
ogy and WSDL descriptions.

Our evaluations show that the design of the Limbo com-
piler is successful in terms of resource consumption of the

17Apache Muse project. http://ws.apache.org/muse/

generated web services, complexity hiding of both device
hardware/software details and the web service itself, and
that developers can use Limbo to develop resource efficient
web services for a variant of different embedded devices.
The Limbo compiler is also used to generate code (event
publishing/subscribing, state machine) for the development
of self-diagnosis feature in Hydra, which demonstrates its
usefulness for pervasive service development.

More backend components supporting other embedded
platforms, for example LeJOS and Microsoft .Net, are also
under planning. To support more efficient transport of
SOAP messages, we are investigating to use UDP as the un-
derlying transportation protocol. To improve the usability
of the Limbo tool, an integrated development environment
using Eclipse is scheduled to help user make decisions on
choosing the generating types, for example software plat-
forms.

Acknowledgements

The research reported in this paper has been supported
by the Hydra EU project (IST-2005-034891). Thanks to
Goncalo Soares for the implementation of the first version
of Limbo and performance measurements.

References

[1] P. Dolog. Model-Driven Navigation Design for Semantic
Web Applications with the UML-Guide. Engineering Ad-
vanced Web Applications, In Maristella Matera and Sara Co-
mai (eds.), Dec. 2004.

[2] R. Grimm, D. Wetherall, J. Davis, E. Lemar, A. Macbeth,
S. Swanson, T. Anderson, B. Bershad, G. Borriello, and
S. Gribble. System support for pervasive applications. ACM
Transactions on Computer Systems (TOCS), 22(4):421–486,
2004.

[3] K. M. Hansen, W. Zhang, J. Fernandes, and M. Ingstrup. Se-
mantic web ontology for ambient intelligence: Runtime mon-
itoring of semantic component constraints. In The Internet
of Things and Services, 1st International Research Workshop,
Sophia Antipolis, French, Sept. 2008. To appear.

[4] K. M. Hansen, W. Zhang, and G. Soares. Ontology-enabled
generation of embedded web services. In The 20th Interna-
tional Conference on Software Engineering and Knowledge
Engineering, pages 345–350, Redwood City, San Francisco
Bay, USA, Jul. 2008.

[5] M. Kostoulas, M. Matsa, and N. e. a. Mendelsohn. XML
screamer: an integrated approach to high performance XML
parsing, validation and deserialization. 15th international
conference on World Wide Web, pages 93–102, 2006.

[6] OSGi Alliance. OSGi Service Platform – Service Com-
pendium. Technical Report Release 4, Version 4.1, OSGi,
April 2007.

[7] M. Shaw. Some Patterns for Software Architectures. Pattern
Languages of Program Design, 2:255–269, 1996.

142

	Introduction
	Components Overview

	SOAP transportation over different protocols
	Introduction to the supported protocols
	TCP
	UDP
	Bluetooth
	SOAP

	SOAP over UDP
	Client stub for different protocols
	Server skeleton for different protocols
	Handling variabilities of transportation protocols

	SOAP over Bluetooth

	REpresentational State Transfer (REST)
	REST Overview
	Supporting REST in Limbo
	Describing REST Services using WSDL
	Implementing REST Support in Limbo
	A REST Example

	Development environment support
	Hydra-enabling a device using Limbo
	A general overview of Limbo features, Limbo generation process and its generated artifacts
	Updated Limbo features and compilation process
	How to make use of the new features
	Overview of the generated code

	Developers evaluation
	TID experience
	TCON experience
	Target platform overview

	Limbo configuration validation and QoS support for web service generation using OWL/SWRL ontologies
	Limbo configuration validation
	Limbo configuration and validation rules

	Power consumption and QoS considerations of communication technologies for web service generation
	SWRL rules for guiding the Limbo web service code generation
	Prototype implementation

	Integration between Rule-based configuration management, ASL and Limbo
	Integration of Limbo with ASL
	Configurations with ASL scripts
	Integration of SWRL reasoning with ASL for the Limbo code generation

	Conclusion and future work
	Published Papers
	Paper 1: Semantic Web ontologies for Ambient Intelligence: Runtime Monitoring of Semantic Component Constraints
	Paper 2: Towards Self-Managed Executable Petri Nets
	Paper 3: Semantic Web based Self-management for a Pervasive Service Middleware
	Paper 4: Towards Self-managed Pervasive Middleware using OWL/SWRL ontologies
	Paper 5: An OWL/SWRL based Diagnosis Approach in a Pervasive Middleware
	Paper 6: Flexible Generation of Pervasive Web Services Using OSGi Declarative Services and OWL Ontologies

